To see the other types of publications on this topic, follow the link: Transition metal carbonyls.

Journal articles on the topic 'Transition metal carbonyls'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Transition metal carbonyls.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kiremire, Enos Masheija Rwantale. "Unusual underground Capping Carbonyl Clusters of Palladium." International Journal of Chemistry 8, no. 1 (January 21, 2016): 145. http://dx.doi.org/10.5539/ijc.v8n1p145.

Full text
Abstract:
<p>Transition metal carbonyls form unlike boranes a wide range of clusters. High nuclearity carbonyl clusters have a tendency to form capped clusters. Using the method of series explained in this paper, many capped carbonyl clusters have been identified for group 7, 8, 9 and 10 transition metals such as rhenium, osmium, rhodium and palladium. The series have discovered that palladium form exclusively capped carbonyl clusters. Furthermore, it has been discovered that some of the capped clusters have negative nuclear closo function. Such carbonyls have been regarded as capping underground. This paper presents the unique characteristic of high nuclearity capping carbonyl clusters of palladium.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

Schaefer, Henry F., and R. Bruce King. "Unsaturated binuclear homoleptic metal carbonyls M2(CO)x (M = Fe, Co, Ni; x = 5, 6, 7, 8). Are multiple bonds between transition metals possible for these molecules?" Pure and Applied Chemistry 73, no. 7 (July 1, 2001): 1059–73. http://dx.doi.org/10.1351/pac200173071059.

Full text
Abstract:
Modern density functional methods, which yield geometrical parameters and energies close to experimental values for known metal carbonyls such as Fe(CO)5 and Fe2(CO)9, have been extended to unsaturated binary binuclear metal carbonyls. Novel optimized structures have been discovered containing metal­metal multiple bonds, four-electron bridging carbonyl groups, and metal electronic configurations less than 18 electrons.
APA, Harvard, Vancouver, ISO, and other styles
3

Gutmann, Michael, Jörg M. Janello, and Markus S. Dickebohm. "Ultrafast dynamics of transition metal carbonyls." Chemical Physics 239, no. 1-3 (December 1998): 317–29. http://dx.doi.org/10.1016/s0301-0104(98)00348-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xie, Y., and H. F. Schaefer. "The Characterization of Metal–Metal Bonds in Unsaturated Binuclear Homoleptic Transition Metal Carbonyls. The Compliance Matrix." Zeitschrift für Physikalische Chemie 217, no. 3 (March 1, 2003): 189–204. http://dx.doi.org/10.1524/zpch.217.3.189.20468.

Full text
Abstract:
AbstractThe compliance matrix (inverse force constant matrix) has been used to estimate metal–metal bond character for the homoleptic transition metal carbonyls Fe2(CO)n and Co2(CO)n. The results are often in agreement with other methods, but the compliance matrix provides a unique measure while other methods may be ambiguous. The more unsaturated compounds with fewer carbonyls have stronger metal–metal linkages, indicating a general, if not infallible, correlation between the diagonal compliance matrix element and the formal bond order, given by the 18-electron rule. It is found that the apparent metal–metal bond strength, as judged by the compliance matrix, is significantly enhanced by the bridging (as opposed to terminal) carbonyls. Thus one must only make precise comparisons between systems with the same numbers of bridging carbonyls.
APA, Harvard, Vancouver, ISO, and other styles
5

Ervin, Kent M. "Metal-ligand interactions: Gas-phase transition metal cluster carbonyls." International Reviews in Physical Chemistry 20, no. 2 (April 2001): 127–64. http://dx.doi.org/10.1080/01442350010028532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reiter, Dominik, Richard Holzner, Amelie Porzelt, Philipp Frisch, and Shigeyoshi Inoue. "Silylated silicon–carbonyl complexes as mimics of ubiquitous transition-metal carbonyls." Nature Chemistry 12, no. 12 (October 19, 2020): 1131–35. http://dx.doi.org/10.1038/s41557-020-00555-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WATANABE, Yoshihisa, Take-aki MITSUDO, Teruyuki KONDO, Kenji WADA, and Motohiro AKAZOME. "Novel Reactions Catalyzed by Transition Metal Carbonyls." Journal of The Japan Petroleum Institute 37, no. 5 (1994): 471–79. http://dx.doi.org/10.1627/jpi1958.37.471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Assefa, M. K., J. L. Devera, A. D. Brathwaite, J. D. Mosley, and M. A. Duncan. "Vibrational scaling factors for transition metal carbonyls." Chemical Physics Letters 640 (November 2015): 175–79. http://dx.doi.org/10.1016/j.cplett.2015.10.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Koridze, A. A. "Acetylide derivatives of transition metal cluster carbonyls." Russian Chemical Bulletin 49, no. 7 (July 2000): 1135–63. http://dx.doi.org/10.1007/bf02495755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kiremire, Enos Masheija Rwantale. "The Main Group Elements, Fragments, Compounds and Clusters Obey the 4n Rule and Form 4n Series: They are Close relatives to Transition Metal Counterparts via the 14n Linkage." International Journal of Chemistry 8, no. 2 (April 27, 2016): 94. http://dx.doi.org/10.5539/ijc.v8n2p94.

Full text
Abstract:
<p>The paper presents numbers which were derived from 4n-based series in a matrix table. The numbers agree precisely with the total number of valence electrons surrounding the respective skeletal elements. The series approach focuses mainly on the number of skeletal elements and their respective number of valence electron content regardless of the origin of the electrons and the type of skeletal elements. For instance, any 6 skeletal elements of transition metal carbonyls surrounded by 86 valence electrons coded as (6,86), series S = 14n+2 normally adopt an octahedral geometry whereas (6,26) series S = 4n+2 for main group elements also tend to adopt an octahedral shape. The transition metal carbonyl cluster series were extensively covered in our previous articles. This paper demonstrates that the main group fragments, clusters and molecules which we normally explain by terms such as valency, valence electrons and octet rule also obey the 4n-based series. The fragments, molecules and clusters of the main group elements correspond well to those of respective transition metal clusters especially the carbonyls if the masking electrons are removed from them. Hence, the series approach is a qualitative method that acts as a unifier of some transition metal clusters with some main group elements clusters.</p>
APA, Harvard, Vancouver, ISO, and other styles
11

Brewer, Stuart A., John H. Holloway, and Eric G. Hope. "Reactions of transition-metal carbonyls with anhydrous HF." Journal of Fluorine Chemistry 70, no. 2 (February 1995): 167–69. http://dx.doi.org/10.1016/0022-1139(94)03112-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ervin, Kent M. "ChemInform Abstract: Metal-Ligand Interactions: Gas-Phase Transition Metal Cluster Carbonyls." ChemInform 32, no. 38 (May 24, 2010): no. http://dx.doi.org/10.1002/chin.200138261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kolis, J. "Coordination chemistry of polychalcogen anions and transition metal carbonyls." Coordination Chemistry Reviews 105, no. 1 (November 1, 1990): 195–219. http://dx.doi.org/10.1016/0010-8545(90)80023-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Koridze, A. A. "ChemInform Abstract: Acetylide Derivatives of Transition Metal Cluster Carbonyls." ChemInform 32, no. 2 (January 9, 2001): no. http://dx.doi.org/10.1002/chin.200102251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Smith, G. P. "Gas-phase first bond dissociation energies in transition-metal carbonyls." Polyhedron 7, no. 16-17 (January 1988): 1605–8. http://dx.doi.org/10.1016/s0277-5387(00)81785-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mathur, Pradeep, Abhinav Raghuvanshi, and Shaikh M. Mobin. "Reactivity of 1,2,3-triselena[3]ferrocenophane towards transition metal carbonyls." Journal of Organometallic Chemistry 794 (October 2015): 266–73. http://dx.doi.org/10.1016/j.jorganchem.2015.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Benjamin, Sophie L., William Levason, Gillian Reid, and Michael C. Rogers. "Hybrid dibismuthines and distibines as ligands towards transition metal carbonyls." Dalton Transactions 40, no. 24 (2011): 6565. http://dx.doi.org/10.1039/c1dt10447k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hillier, Anna C., Sung Ying Liu, Andrea Sella, Omar Zekria, and Mark R. J. Elsegood. "Reactivity of pyrazolylborate complexes of samarium with transition metal carbonyls." Journal of Organometallic Chemistry 528, no. 1-2 (February 1997): 209–15. http://dx.doi.org/10.1016/s0022-328x(96)06533-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fu, Peng Fei, Masood A. Khan, and Kenneth M. Nicholas. "Carbon dioxide complexes via aerobic oxidation of transition metal carbonyls." Journal of the American Chemical Society 114, no. 16 (July 1992): 6579–80. http://dx.doi.org/10.1021/ja00042a060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Almond, Matthew J. "Photooxidation reactions of transition metal carbonyls in low-temperature matrices." Chemical Society Reviews 23, no. 5 (1994): 309. http://dx.doi.org/10.1039/cs9942300309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hollingsworth, William E., and Veronica Vaida. "Photofragmentation of transition-metal-cluster carbonyls in the gas phase." Journal of Physical Chemistry 90, no. 7 (March 1986): 1235–40. http://dx.doi.org/10.1021/j100398a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Waschbüch, Klaus, Pascal Le Floch, Louis Ricard, and François Mathey. "2-Phosphanylphosphinines as Bridging Ligands for Dinuclear Transition Metal Carbonyls." Chemische Berichte 130, no. 7 (July 1997): 843–49. http://dx.doi.org/10.1002/cber.19971300706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tehfe, Mohamad-Ali, Jacques Lalevée, Didier Gigmes, and Jean Pierre Fouassier. "Combination of transition metal carbonyls and silanes: New photoinitiating systems." Journal of Polymer Science Part A: Polymer Chemistry 48, no. 8 (April 15, 2010): 1830–37. http://dx.doi.org/10.1002/pola.23956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Darensbourg, Marcetta Y., Carlton E. Ash, Larry W. Arndt, Christopher P. Janzen, Kay A. Youngdahl, and Yong K. Park. "Reactions of anionic transition metal carbonyl hydrides with electrophilic metal carbonyls: Nucleophilic addition (hydride transfer) vs. electron transfer mechanisms." Journal of Organometallic Chemistry 383, no. 1-3 (February 1990): 191–99. http://dx.doi.org/10.1016/0022-328x(90)85131-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lam, Zhiyong, Kien Voon Kong, Malini Olivo, and Weng Kee Leong. "Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing." Analyst 141, no. 5 (2016): 1569–86. http://dx.doi.org/10.1039/c5an02191j.

Full text
Abstract:
Transition metal carbonyls exhibit strong CO absorptions in the 2200–1800 cm−1 region, which is free of interference from other functional groups. This feature has led to their applications in bio-imaging and -sensing, in particular through mid-IR, Raman and more recently, surface-enhanced Raman spectroscopy (SERS).
APA, Harvard, Vancouver, ISO, and other styles
26

Singh, Gurjaspreet. "Reactivity of 1-Isothiocyanato Six Membered Silatrane towards Transition Metal Carbonyls." International Journal of Innovative Research in Science, Engineering and Technology 03, no. 08 (August 15, 2014): 15758–63. http://dx.doi.org/10.15680/ijirset.2014.0308091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gormley, Fiona K., Julie Gronbach, Sylvia M. Draper, and Anthony P. Davis. "Benzylic oligothioethers as ditopic ligands for Group 6 transition metal carbonyls." Journal of the Chemical Society, Dalton Transactions, no. 2 (2000): 173–79. http://dx.doi.org/10.1039/a909313c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

KOLIS, J. W. "ChemInform Abstract: Coordination Chemistry of Polychalcogen Anions and Transition Metal Carbonyls." ChemInform 22, no. 8 (August 23, 2010): no. http://dx.doi.org/10.1002/chin.199108384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Chong, Qinming Li, Xiangtao Kong, Huijun Zheng, Tiantong Wang, Ya Zhao, Gang Li, et al. "Observation of Carbon–Carbon Coupling Reaction in Neutral Transition-Metal Carbonyls." Journal of Physical Chemistry Letters 12, no. 3 (January 20, 2021): 1012–17. http://dx.doi.org/10.1021/acs.jpclett.0c03766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

L.Seh gal, M., Amit Aggar wal, and Md Irshad Ahmad. "NMR (13C, 17O), IR and Raman Studies of Poly-nuclear Carbonyls Transition Metal Carbonyls : A DFT Application." Oriental Journal of Chemistry 33, no. 2 (April 25, 2017): 537–55. http://dx.doi.org/10.13005/ojc/330201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yadav, Ravi, Md Elius Hossain, Ramees Peedika Paramban, Thomas Simler, Christoph Schoo, Jun Wang, Glen B. Deacon, Peter C. Junk, and Peter W. Roesky. "3d–4f heterometallic complexes by the reduction of transition metal carbonyls with bulky LnII amidinates." Dalton Transactions 49, no. 23 (2020): 7701–7. http://dx.doi.org/10.1039/d0dt01271h.

Full text
Abstract:
Heterometallic lanthanide-transition metal carbonyl complexes [Sm2–Co2], [Yb–Co], and [Sm2–Fe3] have been synthesized by redox reactions between bulky amidinate stabilized divalent Ln and TM carbonyl complexes.
APA, Harvard, Vancouver, ISO, and other styles
32

Desai, P., Nikitaa Ashokan, and M. Nath. "Generalized Synthesis ofEAs [E= Fe, Co, Mn, Cr] Nanostructures and Investigating Their Morphology Evolution." Journal of Nanomaterials 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/362152.

Full text
Abstract:
This paper illustrates a novel route for the synthesis of nanostructured transition metal arsenides including those of FeAs, CoAs, MnAs, and CrAs through a generalized protocol. The key feature of the method is the use of one-stephot-injectionand the clever use of a combination of precursors which are low-melting and highly reactive such as metal carbonyls and triphenylarsine in a solventless setup. This method also facilitates the formation of one-dimensional nanostructures as we move across the periodic table from CrAs to CoAs. The chemical basis of this reaction is simple redox chemistry between the transition metals, wherein the transition metal is oxidized from elemental state (E0) toE3+in lieuof reduction of As3+to As3−. While the thermodynamic analysis reveals that all these conversions are spontaneous, it is the kinetics of the process that influences morphology of the product nanostructures, which varies from extremely small nanoparticles to nanorods. Transition metal pnictides show interesting magnetic properties and these nanostructures can serve as model systems for the exploration of their intricate magnetism as well as their applications and can also function as starting materials for the arsenide based nanosuperconductors.
APA, Harvard, Vancouver, ISO, and other styles
33

Deringer, Volker L., Ai Wang, Janine George, Richard Dronskowski, and Ulli Englert. "Anisotropic thermal motion in transition-metal carbonyls from experiments and ab initio theory." Dalton Transactions 45, no. 35 (2016): 13680–85. http://dx.doi.org/10.1039/c6dt02487d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bouska, Marek, Libor Dostál, Michael Lutter, Britta Glowacki, Zdenka Ruzickova, Daniel Beck, Roman Jambor, and Klaus Jurkschat. "N-Coordinated Tin(II) Trifluoromethanesulfonates and Their Reactions with Transition Metal Carbonyls." Inorganic Chemistry 54, no. 14 (June 26, 2015): 6792–800. http://dx.doi.org/10.1021/acs.inorgchem.5b00678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lane, Kelley R., Larry Sallans, and Robert R. Squires. "Gas-phase nucleophilic addition reactions of negative ions with transition-metal carbonyls." Journal of the American Chemical Society 108, no. 15 (July 1986): 4368–78. http://dx.doi.org/10.1021/ja00275a024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhu, Qihao, James C. Fettinger, Petra Vasko, and Philip P. Power. "Interactions of a Diplumbyne with Dinuclear Transition Metal Carbonyls to Afford Metalloplumbylenes." Organometallics 39, no. 24 (December 4, 2020): 4629–36. http://dx.doi.org/10.1021/acs.organomet.0c00659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gribanova, T. N., R. M. Minyaev, and V. I. Minkin. "Structure and stability of bipyramidal complexes of cyclopolyenes with transition metal carbonyls." Doklady Chemistry 436, no. 2 (February 2011): 22–26. http://dx.doi.org/10.1134/s0012500811020029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lin, C. H., C. Y. Lee, T. T. Jzang, C. C. Lin, and C. S. Liu. "Cycloaddition reactions between tetrafluorodisilicyclobutene and cyclic dienes mediated by transition metal carbonyls." Journal of Organometallic Chemistry 356, no. 3 (December 1988): 325–42. http://dx.doi.org/10.1016/0022-328x(88)83150-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Henkel, Gerald, and Stefan Weissgraber. "ChemInform Abstract: Towards Transition Metal Clusters by Reaction of Simple Metal Carbonyls with Chalcogenides and Chalcogenolates." ChemInform 31, no. 37 (September 12, 2000): no. http://dx.doi.org/10.1002/chin.200037269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bullett, D. W. "Clusters and surface processes: Electron states in medium-nuclearity transition-metal cluster carbonyls." Surface Science 189-190 (October 1987): 583–89. http://dx.doi.org/10.1016/s0039-6028(87)80485-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nifantyev, Eduard E., Vera I. Maslennikova, Svetlana E. Goryukhina, Mikhail Yu Antipin, Konstantin A. Lyssenko, and Larisa K. Vasyanina. "Complexes of P(III)-phosphocavitands with Groups VI and VII transition metal carbonyls." Journal of Organometallic Chemistry 631, no. 1-2 (August 2001): 1–8. http://dx.doi.org/10.1016/s0022-328x(01)00779-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lane, Kelley R., Larry Sallans, and Robert R. Squires. "Correction. Gas Phase Nucleophilic Addition Reactions of Negative Ions with Transition Metal Carbonyls." Journal of the American Chemical Society 108, no. 25 (December 1986): 8119. http://dx.doi.org/10.1021/ja00285a602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Berstler, James, Annycardeli Lopez, Danièle Ménard, William G. Dougherty, W. Scott Kassel, Andrew Hansen, Amin Daryaei, et al. "Synthesis and spectroelectrochemistry of transition metal carbonyls with 1,1′-bis(phosphino)metallocene ligands." Journal of Organometallic Chemistry 712 (August 2012): 37–45. http://dx.doi.org/10.1016/j.jorganchem.2012.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kotzian, Manfred, Notker Roesch, Hartmut Schroeder, and Michael C. Zerner. "Optical spectra of transition-metal carbonyls: chromium hexacarbonyl, iron pentacarbonyl, and nickel tetracarbonyl." Journal of the American Chemical Society 111, no. 20 (September 1989): 7687–96. http://dx.doi.org/10.1021/ja00202a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sappa, Enrico. "Complexes of transition metal carbonyls with alkynes. Closo- and nido-pentagonal bipyramidal clusters." Journal of Organometallic Chemistry 573, no. 1-2 (January 1999): 139–55. http://dx.doi.org/10.1016/s0022-328x(98)00706-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tecklenburg, R. E., and D. H. Russell. "Laser-ion beam photodissociation studies of ionic cluster fragments of transition-metal carbonyls." Journal of the American Chemical Society 109, no. 25 (December 1987): 7654–62. http://dx.doi.org/10.1021/ja00259a013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tiana, Davide, E. Francisco, M. A. Blanco, P. Macchi, Angelo Sironi, and A. Martín Pendás. "Bonding in Classical and Nonclassical Transition Metal Carbonyls: The Interacting Quantum Atoms Perspective." Journal of Chemical Theory and Computation 6, no. 4 (March 19, 2010): 1064–74. http://dx.doi.org/10.1021/ct9006629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Marotta, Christopher J., Cheng‐ping Tsai, and David L. McFadden. "Electron attachment reactions of perfluoroalkyl transition metal carbonyls: Rate constants and product analysis." Journal of Chemical Physics 91, no. 4 (August 15, 1989): 2194–99. http://dx.doi.org/10.1063/1.457028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kelly, Anne M., Glen P. Rosini, and Alan S. Goldman. "Oxygen Transfer from Organoelement Oxides to Carbon Monoxide Catalyzed by Transition Metal Carbonyls." Journal of the American Chemical Society 119, no. 26 (July 1997): 6115–25. http://dx.doi.org/10.1021/ja970158s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bates, C. Matthew, and Christopher P. Morley. "(Pentamethylcyclopentadienyl)selenium Derivatives. 5.1Bis(pentamethylcyclopentadienyl)selenium and Its Reactions with Transition-Metal Carbonyls." Organometallics 16, no. 9 (April 1997): 1906–11. http://dx.doi.org/10.1021/om961021y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography