Journal articles on the topic 'Translation initiation sites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Translation initiation sites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Paek, Ki Young, Ka Young Hong, Incheol Ryu, Sung Mi Park, Sun Ju Keum, Oh Sung Kwon, and Sung Key Jang. "Translation initiation mediated by RNA looping." Proceedings of the National Academy of Sciences 112, no. 4 (January 12, 2015): 1041–46. http://dx.doi.org/10.1073/pnas.1416883112.
Full textGelsinger, Diego Rivera, Emma Dallon, Rahul Reddy, Fuad Mohammad, Allen R. Buskirk, and Jocelyne DiRuggiero. "Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution." Nucleic Acids Research 48, no. 10 (May 8, 2020): 5201–16. http://dx.doi.org/10.1093/nar/gkaa304.
Full textGanoza, M. C., E. C. Kofoid, P. Marlière, and B. G. Louis. "Potential secondary structure at translation-initiation sites." Nucleic Acids Research 16, no. 9 (1988): 4196. http://dx.doi.org/10.1093/nar/16.9.4196-a.
Full textGanoza, M. C., E. C. Kofoid, P. Marlière, and B. G. Louis. "Potential secondary structure at translation-initiation sites." Nucleic Acids Research 15, no. 1 (1987): 345–60. http://dx.doi.org/10.1093/nar/15.1.345.
Full textRobbins-Pianka, A., M. D. Rice, and M. P. Weir. "The mRNA landscape at yeast translation initiation sites." Bioinformatics 26, no. 21 (September 6, 2010): 2651–55. http://dx.doi.org/10.1093/bioinformatics/btq509.
Full textZhang, Sai, Hailin Hu, Tao Jiang, Lei Zhang, and Jianyang Zeng. "TITER: predicting translation initiation sites by deep learning." Bioinformatics 33, no. 14 (July 12, 2017): i234—i242. http://dx.doi.org/10.1093/bioinformatics/btx247.
Full textChoi, Myoung-Kwon, Sung-Dong Park, In-Sick Park, and Il-Soo Moon. "Localization of Translation Initiation Factors to the Postsynaptic Sites." Journal of Life Science 21, no. 11 (November 30, 2011): 1526–31. http://dx.doi.org/10.5352/jls.2011.21.11.1526.
Full textLi, Guo-Liang, and Tze-Yun Leong. "Feature Selection for the Prediction of Translation Initiation Sites." Genomics, Proteomics & Bioinformatics 3, no. 2 (2005): 73–83. http://dx.doi.org/10.1016/s1672-0229(05)03012-3.
Full textSendoel, Ataman, Joshua G. Dunn, Edwin H. Rodriguez, Shruti Naik, Nicholas C. Gomez, Brian Hurwitz, John Levorse, et al. "Translation from unconventional 5′ start sites drives tumour initiation." Nature 541, no. 7638 (January 2017): 494–99. http://dx.doi.org/10.1038/nature21036.
Full textShah, O. Jameel, Joshua C. Anthony, Scot R. Kimball, and Leonard S. Jefferson. "4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle." American Journal of Physiology-Endocrinology and Metabolism 279, no. 4 (October 1, 2000): E715—E729. http://dx.doi.org/10.1152/ajpendo.2000.279.4.e715.
Full textPrats, Anne-Catherine, Florian David, Leila H. Diallo, Emilie Roussel, Florence Tatin, Barbara Garmy-Susini, and Eric Lacazette. "Circular RNA, the Key for Translation." International Journal of Molecular Sciences 21, no. 22 (November 14, 2020): 8591. http://dx.doi.org/10.3390/ijms21228591.
Full textRyabova, L., H. S. Park, and T. Hohn. "Control of translation reinitiation on the cauliflower mosaic virus (CaMV) polycistronic RNA." Biochemical Society Transactions 32, no. 4 (August 1, 2004): 592–96. http://dx.doi.org/10.1042/bst0320592.
Full textNakamoto, Jose A., Wilfredo Evangelista, Daria S. Vinogradova, Andrey L. Konevega, Roberto Spurio, Attilio Fabbretti, and Pohl Milón. "The dynamic cycle of bacterial translation initiation factor IF3." Nucleic Acids Research 49, no. 12 (June 23, 2021): 6958–70. http://dx.doi.org/10.1093/nar/gkab522.
Full textHoyle, Nathaniel P., and Mark P. Ashe. "Subcellular localization of mRNA and factors involved in translation initiation." Biochemical Society Transactions 36, no. 4 (July 22, 2008): 648–52. http://dx.doi.org/10.1042/bst0360648.
Full textAn, Sihyeon, Oh Sung Kwon, Jinbae Yu, and Sung Key Jang. "A cyclin-dependent kinase, CDK11/p58, represses cap-dependent translation during mitosis." Cellular and Molecular Life Sciences 77, no. 22 (February 6, 2020): 4693–708. http://dx.doi.org/10.1007/s00018-019-03436-3.
Full textCate, Jamie H. D. "Human eIF3: from ‘blobology’ to biological insight." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1716 (March 19, 2017): 20160176. http://dx.doi.org/10.1098/rstb.2016.0176.
Full textPetrelli, Dezemona, Cristiana Garofalo, Matilde Lammi, Roberto Spurio, Cynthia L. Pon, Claudio O. Gualerzi, and Anna La Teana. "Mapping the Active Sites of Bacterial Translation Initiation Factor IF3." Journal of Molecular Biology 331, no. 3 (August 2003): 541–56. http://dx.doi.org/10.1016/s0022-2836(03)00731-9.
Full textGao, Tingting, Zhixia Yang, Yong Wang, and Ling Jing. "Identifying translation initiation sites in prokaryotes using support vector machine." Journal of Theoretical Biology 262, no. 4 (February 2010): 644–49. http://dx.doi.org/10.1016/j.jtbi.2009.10.023.
Full textWeir, Michael P., and Michael D. Rice. "TRII: A Probabilistic Scoring of Drosophila melanogaster Translation Initiation Sites." EURASIP Journal on Bioinformatics and Systems Biology 2010 (2010): 1–14. http://dx.doi.org/10.1155/2010/814127.
Full textNoderer, William L., Ross J. Flockhart, Aparna Bhaduri, Alexander J. Diaz de Arce, Jiajing Zhang, Paul A. Khavari, and Clifford L. Wang. "Quantitative analysis of mammalian translation initiation sites by FACS ‐seq." Molecular Systems Biology 10, no. 8 (August 2014): 748. http://dx.doi.org/10.15252/msb.20145136.
Full textZhu, H. Q., G. Q. Hu, Z. Q. Ouyang, J. Wang, and Z. S. She. "Accuracy improvement for identifying translation initiation sites in microbial genomes." Bioinformatics 20, no. 18 (July 9, 2004): 3308–17. http://dx.doi.org/10.1093/bioinformatics/bth390.
Full textZien, A., G. Ratsch, S. Mika, B. Scholkopf, T. Lengauer, and K. R. Muller. "Engineering support vector machine kernels that recognize translation initiation sites." Bioinformatics 16, no. 9 (September 1, 2000): 799–807. http://dx.doi.org/10.1093/bioinformatics/16.9.799.
Full textPatakottu, Balakota Reddy, Prashant Kumar Singh, Pawan Malhotra, V. S. Chauhan, and Swati Patankar. "In vivo analysis of translation initiation sites in Plasmodium falciparum." Molecular Biology Reports 39, no. 3 (June 4, 2011): 2225–32. http://dx.doi.org/10.1007/s11033-011-0971-3.
Full textSen, Nandini, Feng Cao, and John E. Tavis. "Translation of Duck Hepatitis B Virus Reverse Transcriptase by Ribosomal Shunting." Journal of Virology 78, no. 21 (November 1, 2004): 11751–57. http://dx.doi.org/10.1128/jvi.78.21.11751-11757.2004.
Full textKimball, Scot R., Rick L. Horetsky, David Ron, Leonard S. Jefferson, and Heather P. Harding. "Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes." American Journal of Physiology-Cell Physiology 284, no. 2 (February 1, 2003): C273—C284. http://dx.doi.org/10.1152/ajpcell.00314.2002.
Full textIchihara, Kazuya, Akinobu Matsumoto, Hiroshi Nishida, Yuki Kito, Hideyuki Shimizu, Yuichi Shichino, Shintaro Iwasaki, Koshi Imami, Yasushi Ishihama, and Keiichi I. Nakayama. "Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons." Nucleic Acids Research 49, no. 13 (July 6, 2021): 7298–317. http://dx.doi.org/10.1093/nar/gkab549.
Full textMEIJER, Hedda A., and Adri A. M. THOMAS. "Control of eukaryotic protein synthesis by upstream open reading frames in the 5′-untranslated region of an mRNA." Biochemical Journal 367, no. 1 (October 1, 2002): 1–11. http://dx.doi.org/10.1042/bj20011706.
Full textde Breyne, Sylvain, and Théophile Ohlmann. "Focus on Translation Initiation of the HIV-1 mRNAs." International Journal of Molecular Sciences 20, no. 1 (December 28, 2018): 101. http://dx.doi.org/10.3390/ijms20010101.
Full textTech, M., N. Pfeifer, B. Morgenstern, and P. Meinicke. "TICO: a tool for improving predictions of prokaryotic translation initiation sites." Bioinformatics 21, no. 17 (June 30, 2005): 3568–69. http://dx.doi.org/10.1093/bioinformatics/bti563.
Full textMcKENNEY, KEITH, JINGXIANG TIAN, SIMONE NUNES-DUBY, JOEL HOSKINS, and PRASAD REDDY. "A Whole Genome Shotgun Gene Fusion Method for Isolation of Translation Initiation Sites in Escherichia coli: Identification of Haemophilus influenzae Translation Initiation Sites in E. coli." Microbial & Comparative Genomics 2, no. 2 (January 1997): 113–21. http://dx.doi.org/10.1089/omi.1.1997.2.113.
Full textCzibener, Cecilia, Diego Alvarez, Eduardo Scodeller, and Andrea V. Gamarnik. "Characterization of internal ribosomal entry sites of Triatoma virus." Journal of General Virology 86, no. 8 (August 1, 2005): 2275–80. http://dx.doi.org/10.1099/vir.0.80842-0.
Full textXu, Chuan, and Jianzhi Zhang. "Mammalian Alternative Translation Initiation Is Mostly Nonadaptive." Molecular Biology and Evolution 37, no. 7 (March 7, 2020): 2015–28. http://dx.doi.org/10.1093/molbev/msaa063.
Full textXi, Qiaoran, Rafael Cuesta, and Robert J. Schneider. "Regulation of Translation by Ribosome Shunting through Phosphotyrosine-Dependent Coupling of Adenovirus Protein 100k to Viral mRNAs." Journal of Virology 79, no. 9 (May 1, 2005): 5676–83. http://dx.doi.org/10.1128/jvi.79.9.5676-5683.2005.
Full textWillett, Mark, Michele Brocard, Alexandre Davide, and Simon J. Morley. "Translation initiation factors and active sites of protein synthesis co-localize at the leading edge of migrating fibroblasts." Biochemical Journal 438, no. 1 (July 27, 2011): 217–27. http://dx.doi.org/10.1042/bj20110435.
Full textLIU, HUIQING, and LIMSOON WONG. "DATA MINING TOOLS FOR BIOLOGICAL SEQUENCES." Journal of Bioinformatics and Computational Biology 01, no. 01 (April 2003): 139–67. http://dx.doi.org/10.1142/s0219720003000216.
Full textMittelmeier, T. M., and C. L. Dieckmann. "In vivo analysis of sequences required for translation of cytochrome b transcripts in yeast mitochondria." Molecular and Cellular Biology 15, no. 2 (February 1995): 780–89. http://dx.doi.org/10.1128/mcb.15.2.780.
Full textStewart, Joanna D., Joanne L. Cowan, Lisa S. Perry, Mark J. Coldwell, and Christopher G. Proud. "ABC50 mutants modify translation start codon selection." Biochemical Journal 467, no. 2 (April 2, 2015): 217–29. http://dx.doi.org/10.1042/bj20141453.
Full textYakhnin, Helen, Carol S. Baker, Igor Berezin, Michael A. Evangelista, Alisa Rassin, Tony Romeo, and Paul Babitzke. "CsrA Represses Translation of sdiA , Which Encodes the N -Acylhomoserine-l-Lactone Receptor of Escherichia coli, by Binding Exclusively within the Coding Region of sdiA mRNA." Journal of Bacteriology 193, no. 22 (September 9, 2011): 6162–70. http://dx.doi.org/10.1128/jb.05975-11.
Full textColdwell, Mark J., Ulrike Sack, Joanne L. Cowan, Rachel M. Barrett, Markete Vlasak, Keiley Sivakumaran, and Simon J. Morley. "Multiple isoforms of the translation initiation factor eIF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon." Biochemical Journal 448, no. 1 (October 18, 2012): 1–11. http://dx.doi.org/10.1042/bj20111765.
Full textHollerer, Ina, Emily N. Powers, and Gloria A. Brar. "Global mapping of translation initiation sites by TIS profiling in budding yeast." STAR Protocols 2, no. 1 (March 2021): 100250. http://dx.doi.org/10.1016/j.xpro.2020.100250.
Full textWalker, M. "A comparative genomic method for computational identification of prokaryotic translation initiation sites." Nucleic Acids Research 30, no. 14 (July 15, 2002): 3181–91. http://dx.doi.org/10.1093/nar/gkf423.
Full textLi, G., T. Y. Leong, and L. Zhang. "Translation initiation sites prediction with mixture Gaussian models in human cDNA sequences." IEEE Transactions on Knowledge and Data Engineering 17, no. 8 (August 2005): 1152–60. http://dx.doi.org/10.1109/tkde.2005.133.
Full textTech, M., B. Morgenstern, and P. Meinicke. "TICO: a tool for postprocessing the predictions of prokaryotic translation initiation sites." Nucleic Acids Research 34, Web Server (July 1, 2006): W588—W590. http://dx.doi.org/10.1093/nar/gkl313.
Full textTzanis, George, Christos Berberidis, and Ioannis Vlahavas. "StackTIS: A stacked generalization approach for effective prediction of translation initiation sites." Computers in Biology and Medicine 42, no. 1 (January 2012): 61–69. http://dx.doi.org/10.1016/j.compbiomed.2011.10.009.
Full textMokas, Sophie, John R. Mills, Cristina Garreau, Marie-Josée Fournier, Francis Robert, Prabhat Arya, Randal J. Kaufman, Jerry Pelletier, and Rachid Mazroui. "Uncoupling Stress Granule Assembly and Translation Initiation Inhibition." Molecular Biology of the Cell 20, no. 11 (June 2009): 2673–83. http://dx.doi.org/10.1091/mbc.e08-10-1061.
Full textJohnson, Alex G., Rosslyn Grosely, Alexey N. Petrov, and Joseph D. Puglisi. "Dynamics of IRES-mediated translation." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1716 (March 19, 2017): 20160177. http://dx.doi.org/10.1098/rstb.2016.0177.
Full textTarun, S. Z., and A. B. Sachs. "Binding of eukaryotic translation initiation factor 4E (eIF4E) to eIF4G represses translation of uncapped mRNA." Molecular and Cellular Biology 17, no. 12 (December 1997): 6876–86. http://dx.doi.org/10.1128/mcb.17.12.6876.
Full textCargnello, Marie, and Ivan Topisirovic. "c-Myc steers translation in lymphoma." Journal of Experimental Medicine 216, no. 7 (June 17, 2019): 1471–73. http://dx.doi.org/10.1084/jem.20190721.
Full textThiadens, Klaske A. M. H., and Marieke von Lindern. "Selective mRNA translation in erythropoiesis." Biochemical Society Transactions 43, no. 3 (June 1, 2015): 343–47. http://dx.doi.org/10.1042/bst20150009.
Full textEspah Borujeni, Amin, Anirudh S. Channarasappa, and Howard M. Salis. "Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites." Nucleic Acids Research 42, no. 4 (November 14, 2013): 2646–59. http://dx.doi.org/10.1093/nar/gkt1139.
Full text