Journal articles on the topic 'Transman qubit'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Transman qubit.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Said, T., A. Chouikh, K. Essammouni, and M. Bennai. "Implementing N-quantum phase gate via circuit QED with qubit–qubit interaction." Modern Physics Letters B 30, no. 05 (2016): 1650050. http://dx.doi.org/10.1142/s0217984916500500.
Full textYuan, Wei-Ping, Zhi-Cheng He, Sai Li, and Zheng-Yuan Xue. "Fast Reset Protocol for Superconducting Transmon Qubits." Applied Sciences 13, no. 2 (2023): 817. http://dx.doi.org/10.3390/app13020817.
Full textSun, Xiaopei, Bing Li, Enna Zhuo, et al. "Realization of superconducting transmon qubits based on topological insulator nanowires." Applied Physics Letters 122, no. 15 (2023): 154001. http://dx.doi.org/10.1063/5.0140079.
Full textTao, Rui, Xiao-Tao Mo, Zheng-Yuan Xue, and Jian Zhou. "Practical one-step synthesis of multipartite entangled states on superconducting circuits." International Journal of Quantum Information 17, no. 07 (2019): 1950051. http://dx.doi.org/10.1142/s0219749919500515.
Full textKubo, Kentaro, and Hayato Goto. "Fast parametric two-qubit gate for highly detuned fixed-frequency superconducting qubits using a double-transmon coupler." Applied Physics Letters 122, no. 6 (2023): 064001. http://dx.doi.org/10.1063/5.0138699.
Full textDong, Yuqian, Yong Li, Wen Zheng, et al. "Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit." Applied Sciences 12, no. 17 (2022): 8461. http://dx.doi.org/10.3390/app12178461.
Full textYe, Yangsen, Sirui Cao, Yulin Wu, et al. "Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler." Chinese Physics Letters 38, no. 10 (2021): 100301. http://dx.doi.org/10.1088/0256-307x/38/10/100301.
Full textBultink, C. C., T. E. O’Brien, R. Vollmer, et al. "Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements." Science Advances 6, no. 12 (2020): eaay3050. http://dx.doi.org/10.1126/sciadv.aay3050.
Full textGroszkowski, Peter, and Jens Koch. "Scqubits: a Python package for superconducting qubits." Quantum 5 (November 17, 2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.
Full textAhmad, Halima Giovanna, Caleb Jordan, Roald van den Boogaart, et al. "Investigating the Individual Performances of Coupled Superconducting Transmon Qubits." Condensed Matter 8, no. 1 (2023): 29. http://dx.doi.org/10.3390/condmat8010029.
Full textDheer, Vihaan. "The optimization of flux trajectories for the adiabatic controlled-Z gate on split-tunable transmons." AIP Advances 12, no. 9 (2022): 095306. http://dx.doi.org/10.1063/5.0087364.
Full textStefanazzi, Leandro, Kenneth Treptow, Neal Wilcer, et al. "The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors." Review of Scientific Instruments 93, no. 4 (2022): 044709. http://dx.doi.org/10.1063/5.0076249.
Full textStefanazzi, Leandro, Kenneth Treptow, Neal Wilcer, et al. "The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors." Review of Scientific Instruments 93, no. 4 (2022): 044709. http://dx.doi.org/10.1063/5.0076249.
Full textStefanazzi, Leandro, Kenneth Treptow, Neal Wilcer, et al. "The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors." Review of Scientific Instruments 93, no. 4 (2022): 044709. http://dx.doi.org/10.1063/5.0076249.
Full textSharafiev, Aleksei, Mathieu L. Juan, Oscar Gargiulo, et al. "Visualizing the emission of a single photon with frequency and time resolved spectroscopy." Quantum 5 (June 10, 2021): 474. http://dx.doi.org/10.22331/q-2021-06-10-474.
Full textLinke, Norbert M., Dmitri Maslov, Martin Roetteler, et al. "Experimental comparison of two quantum computing architectures." Proceedings of the National Academy of Sciences 114, no. 13 (2017): 3305–10. http://dx.doi.org/10.1073/pnas.1618020114.
Full textCai, Han, Qi-Chun Liu, Chang-Hao Zhao, Ying-Shan Zhang, Jian-She Liu, and Wei Chen. "Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity." Chinese Physics B 27, no. 8 (2018): 084207. http://dx.doi.org/10.1088/1674-1056/27/8/084207.
Full textNavez, P., A. G. Balanov, S. E. Savel’ev, and A. M. Zagoskin. "Quantum electrodynamics of non-demolition detection of single microwave photon by superconducting qubit array." Journal of Applied Physics 133, no. 10 (2023): 104401. http://dx.doi.org/10.1063/5.0137747.
Full textDinerstein, Alec, Caroline S. Gorham, and Eugene F. Dumitrescu. "The hybrid topological longitudinal transmon qubit." Materials for Quantum Technology 1, no. 2 (2021): 021001. http://dx.doi.org/10.1088/2633-4356/abfbc9.
Full textKannan, B., D. L. Campbell, F. Vasconcelos, et al. "Generating spatially entangled itinerant photons with waveguide quantum electrodynamics." Science Advances 6, no. 41 (2020): eabb8780. http://dx.doi.org/10.1126/sciadv.abb8780.
Full textDing, Cheng-Yun, Li-Na Ji, Tao Chen, and Zheng-Yuan Xue. "Path-optimized nonadiabatic geometric quantum computation on superconducting qubits." Quantum Science and Technology 7, no. 1 (2021): 015012. http://dx.doi.org/10.1088/2058-9565/ac3621.
Full textMaciejewski, Filip B., Zoltán Zimborás, and Michał Oszmaniec. "Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography." Quantum 4 (April 24, 2020): 257. http://dx.doi.org/10.22331/q-2020-04-24-257.
Full textAndersen, Christian Kraglund, and Alexandre Blais. "Ultrastrong coupling dynamics with a transmon qubit." New Journal of Physics 19, no. 2 (2017): 023022. http://dx.doi.org/10.1088/1367-2630/aa5941.
Full textGuo, Yanbo, Guozhong Wang та Nianquan Jiang. "Generating χ-Type Four-Qubit Entangled States in Superconducting Transmon Qubit System". International Journal of Theoretical Physics 53, № 9 (2014): 3135–41. http://dx.doi.org/10.1007/s10773-014-2110-0.
Full textSevriuk, V. A., W. Liu, J. Rönkkö, et al. "Initial experimental results on a superconducting-qubit reset based on photon-assisted quasiparticle tunneling." Applied Physics Letters 121, no. 23 (2022): 234002. http://dx.doi.org/10.1063/5.0129345.
Full textWeides, Martin P., Jeffrey S. Kline, Michael R. Vissers, et al. "Coherence in a transmon qubit with epitaxial tunnel junctions." Applied Physics Letters 99, no. 26 (2011): 262502. http://dx.doi.org/10.1063/1.3672000.
Full textTsioutsios, I., K. Serniak, S. Diamond, et al. "Free-standing silicon shadow masks for transmon qubit fabrication." AIP Advances 10, no. 6 (2020): 065120. http://dx.doi.org/10.1063/1.5138953.
Full textCherubim, Cleverson, Frederico Brito, and Sebastian Deffner. "Non-Thermal Quantum Engine in Transmon Qubits." Entropy 21, no. 6 (2019): 545. http://dx.doi.org/10.3390/e21060545.
Full textRosenblum, S., P. Reinhold, M. Mirrahimi, Liang Jiang, L. Frunzio, and R. J. Schoelkopf. "Fault-tolerant detection of a quantum error." Science 361, no. 6399 (2018): 266–70. http://dx.doi.org/10.1126/science.aat3996.
Full textGao, Gui-Long, Gen-Chang Cai, Shou-Sheng Huang, Ming-Feng Wang, and Nian-Quan Jiang. "One-Step Generation of Multi-Qubit GHZ and W States in Superconducting Transmon Qubit System." Communications in Theoretical Physics 57, no. 2 (2012): 205–8. http://dx.doi.org/10.1088/0253-6102/57/2/07.
Full textTsuchimoto, Yuta, and Martin Kroner. "Low-loss high-impedance circuit for quantum transduction between optical and microwave photons." Materials for Quantum Technology 2, no. 2 (2022): 025001. http://dx.doi.org/10.1088/2633-4356/ac5ac4.
Full textAntony, Abhinandan, Martin V. Gustafsson, Guilhem J. Ribeill, et al. "Miniaturizing Transmon Qubits Using van der Waals Materials." Nano Letters 21, no. 23 (2021): 10122–26. http://dx.doi.org/10.1021/acs.nanolett.1c04160.
Full textDial, Oliver, Douglas T. McClure, Stefano Poletto, et al. "Bulk and surface loss in superconducting transmon qubits." Superconductor Science and Technology 29, no. 4 (2016): 044001. http://dx.doi.org/10.1088/0953-2048/29/4/044001.
Full textGambetta, Jay M., Conal E. Murray, Y. K. K. Fung, et al. "Investigating Surface Loss Effects in Superconducting Transmon Qubits." IEEE Transactions on Applied Superconductivity 27, no. 1 (2017): 1–5. http://dx.doi.org/10.1109/tasc.2016.2629670.
Full textXu, Yilun, Gang Huang, Jan Balewski, et al. "Automatic Qubit Characterization and Gate Optimization with QubiC." ACM Transactions on Quantum Computing, April 13, 2022. http://dx.doi.org/10.1145/3529397.
Full textPlace, Alexander P. M., Lila V. H. Rodgers, Pranav Mundada, et al. "New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-22030-5.
Full textWang, Z. T., Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. "Escaping detrimental interactions with microwave-dressed transmon qubits." Chinese Physics Letters, June 27, 2023. http://dx.doi.org/10.1088/0256-307x/40/7/070304.
Full textLandig, A. J., J. V. Koski, P. Scarlino, et al. "Virtual-photon-mediated spin-qubit–transmon coupling." Nature Communications 10, no. 1 (2019). http://dx.doi.org/10.1038/s41467-019-13000-z.
Full textZhang, Eric J., Srikanth Srinivasan, Neereja Sundaresan, et al. "High-performance superconducting quantum processors via laser annealing of transmon qubits." Science Advances 8, no. 19 (2022). http://dx.doi.org/10.1126/sciadv.abi6690.
Full textVepsäläinen, Antti, Roni Winik, Amir H. Karamlou, et al. "Improving qubit coherence using closed-loop feedback." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-29287-4.
Full textSpring, Peter A., Shuxiang Cao, Takahiro Tsunoda, et al. "High coherence and low cross-talk in a tileable 3D integrated superconducting circuit architecture." Science Advances 8, no. 16 (2022). http://dx.doi.org/10.1126/sciadv.abl6698.
Full textWang, Chenlu, Xuegang Li, Huikai Xu, et al. "Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds." npj Quantum Information 8, no. 1 (2022). http://dx.doi.org/10.1038/s41534-021-00510-2.
Full textKosen, Sandoko, Hang-Xi Li, Marcus Rommel, et al. "Building blocks of a flip-chip integrated superconducting quantum processor." Quantum Science and Technology, May 25, 2022. http://dx.doi.org/10.1088/2058-9565/ac734b.
Full textAsaad, Serwan, Christian Dickel, Nathan K. Langford, et al. "Independent, extensible control of same-frequency superconducting qubits by selective broadcasting." npj Quantum Information 2, no. 1 (2016). http://dx.doi.org/10.1038/npjqi.2016.29.
Full textBabu, Aravind Plathanam, Jani Tuorila, and Tapio Ala-Nissila. "State leakage during fast decay and control of a superconducting transmon qubit." npj Quantum Information 7, no. 1 (2021). http://dx.doi.org/10.1038/s41534-020-00357-z.
Full textLisenfeld, Jürgen, Alexander Bilmes, Anthony Megrant, et al. "Electric field spectroscopy of material defects in transmon qubits." npj Quantum Information 5, no. 1 (2019). http://dx.doi.org/10.1038/s41534-019-0224-1.
Full textKounalakis, Marios, Yaroslav M. Blanter, and Gary A. Steele. "Synthesizing multi-phonon quantum superposition states using flux-mediated three-body interactions with superconducting qubits." npj Quantum Information 5, no. 1 (2019). http://dx.doi.org/10.1038/s41534-019-0219-y.
Full textBera, Tanmoy, Sourav Majumder, Sudhir Kumar Sahu, and Vibhor Singh. "Large flux-mediated coupling in hybrid electromechanical system with a transmon qubit." Communications Physics 4, no. 1 (2021). http://dx.doi.org/10.1038/s42005-020-00514-y.
Full textPremkumar, Anjali, Conan Weiland, Sooyeon Hwang, et al. "Microscopic relaxation channels in materials for superconducting qubits." Communications Materials 2, no. 1 (2021). http://dx.doi.org/10.1038/s43246-021-00174-7.
Full textCastellanos-Beltran, M. A., A. J. Sirois, L. Howe, et al. "Coherence-limited digital control of a superconducting qubit using a Josephson pulse generator at 3 K." Applied Physics Letters 122, no. 19 (2023). http://dx.doi.org/10.1063/5.0147692.
Full text