Academic literature on the topic 'Transparent electrodes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transparent electrodes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transparent electrodes"
Doan, Tien Dat, Nhung Hac Thi, Ho Thi Oanh, Tuyen Nguyen Duc, Dong Hoon Choi, and Mai Ha Hoang. "Fabrication of transparent flexible electrodes on polyethylene terephthalate substrate with high conductivity, high transmittance, and excellent stability." Ministry of Science and Technology, Vietnam 65, no. 3 (September 15, 2023): 27–31. http://dx.doi.org/10.31276/vjste.65(3).27-31.
Full textChu, Seo Bum, Dongwook Ko, Jinwook Jung, Sungjin Jo, Dong Choon Hyun, Hyeon-Ju Oh, and Jongbok Kim. "Characterization of Silver Nanowire-Based Transparent Electrodes Obtained Using Different Drying Methods." Nanomaterials 12, no. 3 (January 28, 2022): 461. http://dx.doi.org/10.3390/nano12030461.
Full textMoon, Gitae, Wonjun Jang, Intae Son, Hyun Cho, Yong Park, and Jun Lee. "Fabrication of New Liquid Crystal Device Using Layer-by-Layer Thin Film Process." Processes 6, no. 8 (August 1, 2018): 108. http://dx.doi.org/10.3390/pr6080108.
Full textGuan, Xin, Lujun Pan, and Zeng Fan. "Flexible, Transparent and Highly Conductive Polymer Film Electrodes for All-Solid-State Transparent Supercapacitor Applications." Membranes 11, no. 10 (October 16, 2021): 788. http://dx.doi.org/10.3390/membranes11100788.
Full textMiwa, Yuki, Hisashi Kino, Takafumi Fukushima, and Tetsu Tanaka. "Electrochemical characterization of ZnO-based transparent materials as recording electrodes for neural probes in optogenetics." Journal of Vacuum Science & Technology B 40, no. 5 (September 2022): 052202. http://dx.doi.org/10.1116/6.0001836.
Full textKhatri, Ishwor, Qiming Liu, Ryo Ishikawa, Keiji Ueno, and Hajime Shirai. "Self assembled silver nanowire mesh as top electrode for organic–inorganic hybrid solar cell." Canadian Journal of Physics 92, no. 7/8 (July 2014): 867–70. http://dx.doi.org/10.1139/cjp-2013-0564.
Full textSong, Jiaxing, Guoqiang Ma, Fei Qin, Lin Hu, Bangwu Luo, Tiefeng Liu, Xinxing Yin, et al. "High-Conductivity, Flexible and Transparent PEDOT:PSS Electrodes for High Performance Semi-Transparent Supercapacitors." Polymers 12, no. 2 (February 14, 2020): 450. http://dx.doi.org/10.3390/polym12020450.
Full textOsipkov, Alexey, Mstislav Makeev, Elizaveta Konopleva, Natalia Kudrina, Leonid Gorobinskiy, Pavel Mikhalev, Dmitriy Ryzhenko, and Gleb Yurkov. "Optically Transparent and Highly Conductive Electrodes for Acousto-Optical Devices." Materials 14, no. 23 (November 25, 2021): 7178. http://dx.doi.org/10.3390/ma14237178.
Full textAleksandrova, Mariya. "Specifics and Challenges to Flexible Organic Light-Emitting Devices." Advances in Materials Science and Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/4081697.
Full textZhang, Hehe, Jan Mischke, Wolfgang Mertin, and Gerd Bacher. "Graphene as a Transparent Conductive Electrode in GaN-Based LEDs." Materials 15, no. 6 (March 16, 2022): 2203. http://dx.doi.org/10.3390/ma15062203.
Full textDissertations / Theses on the topic "Transparent electrodes"
Selzer, Franz. "Transparent Electrodes for Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199652.
Full textKinner, Lukas. "Flexible transparent electrodes for optoelectronic devices." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22419.
Full textTransparent electrodes (TEs) are a key element in optoelectronics. TEs assure simultaneous light interaction with the active device layers and efficient charge carrier injection or extraction. The most widely used TE in today’s industry is indium tin oxide (ITO). However, there are downsides to the use of ITO. The scope of this thesis is to discuss alternatives to ITO. Two main approaches are examined in this thesis - one approach is based on using dielectric/metal/dielectric (DMD) films and the other is based on using silver nanowire (NW) films. For the first approach, a combination of sputtered TiOx/Ag/AZO was found to yield the highest transmittance and conductivity ever reported for an electrode on PET with an average transmittance larger than 85 % (including the substrate) in the range 400-700 nm and sheet resistance below 6 Ω/sq. To test the device performance of TiOx/Ag/AZO, DMD electrodes were implemented in organic light emitting diodes (OLEDs). DMD-based devices achieve up to 260 % higher efficacy on PET, as compared to the ITO-based reference devices. As a second approach, NWs were investigated. The implementation of silver nanowires as TEs in solution processed organic light emitting diodes still faces two major challenges: high roughness of nanowire films and heat sensitivity of PET. Therefore, within this thesis, an embedding process with different variations is elaborated to obtain highly conductive and transparent electrodes of NWs on flexible PET substrates. The NWs are embedded into a UV-curable polymer, to reduce the electrode roughness and to enhance its stability. A a transmittance of 80 % (including the substrate) and sheet resistance of 13 Ω/sq is achieved.
Reiter, Fernando. "Carbon based nanomaterials as transparent conductive electrodes." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41070.
Full textSchubert, Sylvio. "Transparent top electrodes for organic solar cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162670.
Full textSong, Yi Ph D. Massachusetts Institute of Technology. "Graphene as transparent electrodes for solar cells." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112027.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 133-142).
The aim of this thesis is to develop an understanding of the science and engineering in applying chemical vapor deposition (CVD) graphene as the transparent conductor in photovoltaic devices. Transparent conducting oxides currently dominate the transparent conductor market but suffer drawbacks that make them unsuitable certain applications. Graphene is mechanically robust, chemically inert, and has work function that can be tuned by chemical doping, making it a versatile substitute that is compatible many types of devices. We start by demonstrating a scalable method for directly transferring graphene onto a variety of substrates and exploring a doping method that vastly enhances the conductivity of graphene films. These developments improve the attractiveness of CVD graphene for transparent electrode applications. Next, we apply graphene to various types of devices to assess key advantages and challenges. We develop an understanding of the importance of the interface in graphene/silicon Schottky barrier solar cells and apply our understanding to achieve record efficiency in these devices. We also explore graphene/SrTiO₃ Schottky junctions, where the graphene itself is responsible for absorbing visible light and show that these devices can be used as tunable photodetectors. We demonstrate highly-transparent organic solar cells with all-graphene electrode as well as inkjet-printed perovskite solar cells with graphene electrodes. Finally, we use graphene/perovskite Schottky barrier solar cells to gain a better understanding of carrier dynamics in perovskite films.
by Yi Song.
Ph. D.
Boscarino, Stefano. "Ultra-thin transparent electrodes for energy applications." Doctoral thesis, Università di Catania, 2015. http://hdl.handle.net/10761/1723.
Full textTomita, Yuto. "Alternative transparent electrodes for organic light emitting diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1236711483222-35217.
Full textGhosh, Dhriti Sundar. "Ultrathin metal transparent electrodes for the optoelectronics industry." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/285839.
Full textLos electrodos transparentes (TEs) son elementos básicos de muchos dispositivos optoelectrónicos, tales como células solares, pantallas táctiles, LEDs orgánicos i LCDs. En consecuencia, la demanda de éstos TEs está creciendo paulatinamente y con un valor de mercado actual de 8 billones de dólares (USD). El estado del arte del óxido de estaño dopado con Indio (ITO) ofrece un excelente compromiso entre transparencia óptica y resistencia eléctrica de hoja pero también tiene inconvenientes, principalmente de precio debido a la escasez del Indio, así como de una inadecuada flexibilidad debida a una baja ductilidad mecánica. En esta tesis se presenta el desarrollo de una nueva clase de TEs basados en capas ultradelgadas de metales (UTMFs). El trabajo empieza des de la comprensión de los aspectos fundamentales relacionados con el crecimiento de los UTMF y sus propiedades, para luego focalizarse en diferentes geometrías, composición y combinaciones para diferentes aplicaciones potenciales en el campo de la optoelectrónica. Las capas ultradelgadas monocomponentes de Ni y de Cr han mostrado tener significativamente alta transparencia en el rango ultravioleta (175-380nm) y en el Infrarrojo mediano (2.5-25um), haciéndolos, por tanto, TE viables para dispositivos tales como fotodiodos de UV y detectores piroeléctricos del IR. El proceso natural de oxidación, el cual es un problema central para las capas metálicas, ha sido aprovechado para conseguir capas metálicas estables gracias a una capa protectora de óxido. En otro novedoso diseño, gracias a la incorporación ad hoc de una malla conductora, la resistencia eléctrica de hoja de los UTMFs puede ser disminuida hasta dos órdenes de magnitud y con una pérdida de transmisión despreciable, y por lo tanto, elimina el compromiso limitante entre transparencia óptica y conductividad eléctrica de los TE basados en capas metálicas continuas. Una estructura de los TEs, basada en una capa conductora ultradelgada de Cu, la cual puede ser funcionalizada para aplicaciones específicas con capas protectoras de Ti o Ni, ha sido demostrada. Las propiedades del TE pueden ser modificadas bajo control y muestran una excelente estabilidad a la temperatura y la oxidación. La idoneidad de la aleación Ag-Cu como capa alternativa al ITO para los TE ha sido también investigada. El espectro óptico de esta aleación sigue el comportamiento óptico medio de las capas monocomponentes de Ag y Cu, y por lo tanto se obtiene una respuesta óptica mucho mas plana en la región del espectro visible. Los UTMFs en combinación con ZnO dopado con Al (AZO), el cual es una opción factible como sustituto del ITO, ha demostrado la posibilidad de hibridar ambas tecnologías. Una bicapa de Ag/AZO ha sido desarrollada, la cual evita el problema de la alta reflexión de los metales y mantiene a su vez sus buenas propiedades eléctricas con un espesor total de capa mínimo. En otra estructura, la capa protectora de los UTMF ha sido utilizada para mejorar la estabilidad del AZO. Se ha visto que una capa protectora ultra-delgada y oxidada de Ni con un espesor igual a su límite de percolación, mejora notablemente la estabilidad de las capas de AZO, manteniendo sus propiedades electro-ópticas, incluso en condiciones severas
Liu, Yujing. "Nanostructured transparent conducting oxide electrodes through nanoparticle assembly." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-149076.
Full textKinner, Lukas [Verfasser]. "Flexible transparent electrodes for optoelectronic devices / Lukas Kinner." Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1228333432/34.
Full textBooks on the topic "Transparent electrodes"
Khan, Arshad. Novel Embedded Metal-mesh Transparent Electrodes. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2918-4.
Full textGhosh, Dhriti Sundar. Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00348-1.
Full textGhosh, Dhriti Sundar. Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry. Heidelberg: Springer International Publishing, 2013.
Find full textSnyder, Trevor James. Visualization and heat transfer study of boiling in microgravity with and applied electric field utilizing single-bubble and surface-boiling semi-transparent gold-film heaters and three electrode geometries: diverging plate, flat plate, and pin electrode. Pullman, WA: School of Mechanical and Materials Engineering, Washington State University, 1995.
Find full textMolloy, James. Argon and argon-chlorine plasma reactive ion etching and surface modification of transparent conductive tin oxide thin films for high resolution flat panel display electrode matrices. [s.l: The Author], 1997.
Find full textGhosh, Dhriti Sundar Sundar. Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry. Springer, 2016.
Find full textUltrathin Metal Transparent Electrodes For The Optoelectronics Industry. Springer International Publishing AG, 2013.
Find full textKhan, Arshad. Novel Embedded Metal-mesh Transparent Electrodes: Vacuum-free Fabrication Strategies and Applications in Flexible Electronic Devices. Springer, 2020.
Find full textKhan, Arshad. Novel Embedded Metal-Mesh Transparent Electrodes: Vacuum-Free Fabrication Strategies and Applications in Flexible Electronic Devices. Springer Singapore Pte. Limited, 2021.
Find full textKullman, Lisen. Components of Smart Windows: Investigations of Electrochromic Films, Transparent Counter Electrodes and Sputtering Techniques (Comprehensive Summaries of Uppsala Dissertations, 425). Uppsala Universitet, 1999.
Find full textBook chapters on the topic "Transparent electrodes"
Koden, Mitsuhiro, Tadahiro Furukawa, Toshinao Yuki, and Hitoshi Nakada. "Transparent Electrodes." In Handbook of Organic Light-Emitting Diodes, 1–20. Tokyo: Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-55761-6_46-1.
Full textBarnes, Teresa M., and Jeffrey L. Blackburn. "Carbon Nanotube Transparent Electrodes." In Transparent Electronics, 185–211. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch7.
Full textHeineman, William R., and William B. Jensen. "Spectroelectrochemistry Using Transparent Electrodes." In ACS Symposium Series, 442–57. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0390.ch030.
Full textGhosh, Dhriti Sundar. "Copper Bilayer Transparent Electrodes." In Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry, 43–50. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00348-1_4.
Full textNaka, Shigeki. "Transparent Electrodes for Organic Light-emitting Diodes." In Transparent Conductive Materials, 301–15. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804603.ch5_2.
Full textChandrashekar, Bananakere Nanjegowda, A. S. Smitha, K. Jagadish, Namratha, S. Srikantaswamy, B. E. Kumara Swamy, Kishor Kumar Sadasivuni, S. Krishnaveni, K. Byrappa, and Chun Cheng. "Functional Nanomaterials for Transparent Electrodes." In Smart Polymer Nanocomposites, 345–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50424-7_13.
Full textPhillips, Thomas W., and John C. de Mello. "New Materials for Transparent Electrodes." In Organic Electronics, 139–74. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527650965.ch06.
Full textChen, Han-Yi, and Meng-Che Tu. "Nanowire-Based Transparent Conductive Electrodes." In Nanostructure Science and Technology, 159–200. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2367-6_6.
Full textKhan, Arshad. "Introduction to Transparent Conductors." In Novel Embedded Metal-mesh Transparent Electrodes, 1–8. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2918-4_1.
Full textYi, Fei, Seng-Tiong Ho, and Tobin J. Marks. "Organic Electro-Optic Modulators with Substantially Enhanced Performance Based on Transparent Electrodes." In Transparent Electronics, 373–401. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch15.
Full textConference papers on the topic "Transparent electrodes"
Ghosh, D. S., L. Martinez, and V. Pruneri. "Transparent metal electrodes." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5196451.
Full textRosamond, Mark C., Andrew J. Gallant, Joe J. Atherton, Michael C. Petty, Oleg Kolosov, and Dagou A. Zeze. "Transparent gold nanowire electrodes." In 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144578.
Full textGruner, George. "Transparent Electrodes, Alternatives to ITO." In Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.stue2.
Full textKovrov, A. E., D. A. Baranov, A. S. Shalin, I. S. Mukhin, and C. R. Simovski. "Optically asymmetric structures for transparent electrodes." In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756848.
Full textSinar, Dogan, George K. Knopf, Suwas Nikumb, and Anatoly Andrushchenko. "Printed optically transparent graphene cellulose electrodes." In SPIE OPTO, edited by Christopher E. Tabor, François Kajzar, Toshikuni Kaino, and Yasuhiro Koike. SPIE, 2016. http://dx.doi.org/10.1117/12.2208790.
Full textMankowski, Trent, Zhaozhao Zhu, Kaushik Balakrishnan, Ali Sehpar Shikoh, Farid Touati, Mohieddine Benammar, Masud Mansuripur, and Charlies M. Falco. "Metal nanowire-graphene composite transparent electrodes." In SPIE Solar Energy + Technology, edited by Louay A. Eldada and Michael J. Heben. SPIE, 2014. http://dx.doi.org/10.1117/12.2062292.
Full textPark, Hyun Sung, Jaewon Jang, and Liwei Lin. "Solution processed highly conductive transparent electrodes." In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016. http://dx.doi.org/10.1109/memsys.2016.7421688.
Full textNa, Jin-Young, and Sun-Kyung Kim. "Metal-Based Near-Infrared Transparent Electrodes." In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/bgppm.2018.jtu5a.5.
Full textMüller-Meskamp, Lars, Sylvio Schubert, Christoph Sachse, Franz Selzer, Ludwig Bormann, Frederik Nehm, Alexander Schubert, Nelli Weiss, and Karl Leo. "Transparent Electrodes for Organic Photovoltaics and OLEDs." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/acpc.2014.af2g.2.
Full textWang, Ken X., Jessica R. Piper, and Shanhui Fan. "Optical impedance transformer for transparent conducting electrodes." In SPIE NanoScience + Engineering, edited by Manijeh Razeghi, Young Hee Lee, and Maziar Ghazinejad. SPIE, 2014. http://dx.doi.org/10.1117/12.2061159.
Full textReports on the topic "Transparent electrodes"
Slafer, W. Dennis. Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/1169187.
Full textRen, Zhifeng. High performance bulk thermoelectric materials and flexible transparent electrodes. Final Technical Report. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1561264.
Full textSantarius, John F., and Gilbert A. Emmert. Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1104537.
Full textChan, Calvin, Thomas Edwin Beechem, III, Taisuke Ohta, Michael T. Brumbach, David Roger Wheeler, Alexander Veneman, I. Raluca Gearba, and Keith J. Stevenson. Accelerating the development of transparent graphene electrodes through basic science driven chemical functionalization. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1177088.
Full textGordon, R. G., K. Kramer, H. Liang, X. Liu, D. Pang, and D. Teff. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Final technical report. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/1776.
Full textKuang, Ping. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1029554.
Full textGordon, R. G. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual subcontract report, 1 May 1991--30 April 1992. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10154387.
Full textGordon, R. G. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual subcontract report, April 1, 1994--March 31, 1995. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/135071.
Full textDonner, Sebastian. Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/933140.
Full textGordon, R. G., H. Sato, H. Liang, X. Liu, and J. Thornton. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual technical report, April 1, 1995--March 31, 1996. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/285504.
Full text