Dissertations / Theses on the topic 'Transparent electrodes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Transparent electrodes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Selzer, Franz. "Transparent Electrodes for Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199652.
Full textKinner, Lukas. "Flexible transparent electrodes for optoelectronic devices." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22419.
Full textTransparent electrodes (TEs) are a key element in optoelectronics. TEs assure simultaneous light interaction with the active device layers and efficient charge carrier injection or extraction. The most widely used TE in today’s industry is indium tin oxide (ITO). However, there are downsides to the use of ITO. The scope of this thesis is to discuss alternatives to ITO. Two main approaches are examined in this thesis - one approach is based on using dielectric/metal/dielectric (DMD) films and the other is based on using silver nanowire (NW) films. For the first approach, a combination of sputtered TiOx/Ag/AZO was found to yield the highest transmittance and conductivity ever reported for an electrode on PET with an average transmittance larger than 85 % (including the substrate) in the range 400-700 nm and sheet resistance below 6 Ω/sq. To test the device performance of TiOx/Ag/AZO, DMD electrodes were implemented in organic light emitting diodes (OLEDs). DMD-based devices achieve up to 260 % higher efficacy on PET, as compared to the ITO-based reference devices. As a second approach, NWs were investigated. The implementation of silver nanowires as TEs in solution processed organic light emitting diodes still faces two major challenges: high roughness of nanowire films and heat sensitivity of PET. Therefore, within this thesis, an embedding process with different variations is elaborated to obtain highly conductive and transparent electrodes of NWs on flexible PET substrates. The NWs are embedded into a UV-curable polymer, to reduce the electrode roughness and to enhance its stability. A a transmittance of 80 % (including the substrate) and sheet resistance of 13 Ω/sq is achieved.
Reiter, Fernando. "Carbon based nanomaterials as transparent conductive electrodes." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41070.
Full textSchubert, Sylvio. "Transparent top electrodes for organic solar cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162670.
Full textSong, Yi Ph D. Massachusetts Institute of Technology. "Graphene as transparent electrodes for solar cells." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112027.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 133-142).
The aim of this thesis is to develop an understanding of the science and engineering in applying chemical vapor deposition (CVD) graphene as the transparent conductor in photovoltaic devices. Transparent conducting oxides currently dominate the transparent conductor market but suffer drawbacks that make them unsuitable certain applications. Graphene is mechanically robust, chemically inert, and has work function that can be tuned by chemical doping, making it a versatile substitute that is compatible many types of devices. We start by demonstrating a scalable method for directly transferring graphene onto a variety of substrates and exploring a doping method that vastly enhances the conductivity of graphene films. These developments improve the attractiveness of CVD graphene for transparent electrode applications. Next, we apply graphene to various types of devices to assess key advantages and challenges. We develop an understanding of the importance of the interface in graphene/silicon Schottky barrier solar cells and apply our understanding to achieve record efficiency in these devices. We also explore graphene/SrTiO₃ Schottky junctions, where the graphene itself is responsible for absorbing visible light and show that these devices can be used as tunable photodetectors. We demonstrate highly-transparent organic solar cells with all-graphene electrode as well as inkjet-printed perovskite solar cells with graphene electrodes. Finally, we use graphene/perovskite Schottky barrier solar cells to gain a better understanding of carrier dynamics in perovskite films.
by Yi Song.
Ph. D.
Boscarino, Stefano. "Ultra-thin transparent electrodes for energy applications." Doctoral thesis, Università di Catania, 2015. http://hdl.handle.net/10761/1723.
Full textTomita, Yuto. "Alternative transparent electrodes for organic light emitting diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1236711483222-35217.
Full textGhosh, Dhriti Sundar. "Ultrathin metal transparent electrodes for the optoelectronics industry." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/285839.
Full textLos electrodos transparentes (TEs) son elementos básicos de muchos dispositivos optoelectrónicos, tales como células solares, pantallas táctiles, LEDs orgánicos i LCDs. En consecuencia, la demanda de éstos TEs está creciendo paulatinamente y con un valor de mercado actual de 8 billones de dólares (USD). El estado del arte del óxido de estaño dopado con Indio (ITO) ofrece un excelente compromiso entre transparencia óptica y resistencia eléctrica de hoja pero también tiene inconvenientes, principalmente de precio debido a la escasez del Indio, así como de una inadecuada flexibilidad debida a una baja ductilidad mecánica. En esta tesis se presenta el desarrollo de una nueva clase de TEs basados en capas ultradelgadas de metales (UTMFs). El trabajo empieza des de la comprensión de los aspectos fundamentales relacionados con el crecimiento de los UTMF y sus propiedades, para luego focalizarse en diferentes geometrías, composición y combinaciones para diferentes aplicaciones potenciales en el campo de la optoelectrónica. Las capas ultradelgadas monocomponentes de Ni y de Cr han mostrado tener significativamente alta transparencia en el rango ultravioleta (175-380nm) y en el Infrarrojo mediano (2.5-25um), haciéndolos, por tanto, TE viables para dispositivos tales como fotodiodos de UV y detectores piroeléctricos del IR. El proceso natural de oxidación, el cual es un problema central para las capas metálicas, ha sido aprovechado para conseguir capas metálicas estables gracias a una capa protectora de óxido. En otro novedoso diseño, gracias a la incorporación ad hoc de una malla conductora, la resistencia eléctrica de hoja de los UTMFs puede ser disminuida hasta dos órdenes de magnitud y con una pérdida de transmisión despreciable, y por lo tanto, elimina el compromiso limitante entre transparencia óptica y conductividad eléctrica de los TE basados en capas metálicas continuas. Una estructura de los TEs, basada en una capa conductora ultradelgada de Cu, la cual puede ser funcionalizada para aplicaciones específicas con capas protectoras de Ti o Ni, ha sido demostrada. Las propiedades del TE pueden ser modificadas bajo control y muestran una excelente estabilidad a la temperatura y la oxidación. La idoneidad de la aleación Ag-Cu como capa alternativa al ITO para los TE ha sido también investigada. El espectro óptico de esta aleación sigue el comportamiento óptico medio de las capas monocomponentes de Ag y Cu, y por lo tanto se obtiene una respuesta óptica mucho mas plana en la región del espectro visible. Los UTMFs en combinación con ZnO dopado con Al (AZO), el cual es una opción factible como sustituto del ITO, ha demostrado la posibilidad de hibridar ambas tecnologías. Una bicapa de Ag/AZO ha sido desarrollada, la cual evita el problema de la alta reflexión de los metales y mantiene a su vez sus buenas propiedades eléctricas con un espesor total de capa mínimo. En otra estructura, la capa protectora de los UTMF ha sido utilizada para mejorar la estabilidad del AZO. Se ha visto que una capa protectora ultra-delgada y oxidada de Ni con un espesor igual a su límite de percolación, mejora notablemente la estabilidad de las capas de AZO, manteniendo sus propiedades electro-ópticas, incluso en condiciones severas
Liu, Yujing. "Nanostructured transparent conducting oxide electrodes through nanoparticle assembly." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-149076.
Full textKinner, Lukas [Verfasser]. "Flexible transparent electrodes for optoelectronic devices / Lukas Kinner." Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1228333432/34.
Full textTomita, Yuto. "Alternative transparent electrodes for organic light emitting diodes." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23806.
Full textHe, Tianda. "Electrospun Nanofibers and Their Applications in Transparent Electrodes." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1396876037.
Full textHabis, Christelle. "Development of ZnO-FTO nanocomposites for the use in transparent conductive thin films." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0192.
Full textMy thesis work entitled “Development of ZnO-FTO nanocomposites for the use in transparent conductive thin films” is supervised by Professor Michel Aillerie at University of Lorraine. This work was mainly made at the “Laboratoire des Matériaux Optiques, Photoniques et Systèmes” LMOPS in Centrale Supélec, Metz. Although this work forms a whole in the elaboration of transparent conductive oxides, it is divided into two parts. The first part consists on identifying the properties of bulk materials (ZnO and FTO) deposited in the form of thin film. Whereas, the second part is about the elaboration and characterization of Zinc Oxide (ZnO) and Aluminum doped Zinc Oxide (AZO) nanofibers, then associated to FTO thin films to form nanocomposite. The main objective of this work is to make flexible electrodes using low cost and abundant material, but also improving the optical properties and more specifically the haze factor of the nanocomposite layers.Transparent conductive oxides (TCOs) are technologically significant class of materials extensively used in thin film solar cells due to their ability to transmit light and collect charge carriers. In addition to the fundamental qualities of transparency and conductivity, the TCOs are frequently desired to have a certain degree of surface roughness (i.e., texture) in order to effectively scatter transmitted light into the active materials, therefore lengthen the optical path and, as a result, enhance the performance of the cell and light absorption. This thesis focuses on the development of low-cost fabrication techniques for transparent oxide layers using non-polluting materials to enable the functionalization of operational devices with high efficiency for renewable energy production. The choice was made to study tin-based TCO layers doped with fluorine, F:SnO2, known as FTOs for "Fluor Tin Oxides". FTOs are wide band gap oxides, like ZnO, TiO2, Al2O3, pure or doped. In principle, these layers have a high scattering factor, as defined above, in order to improve the optical path and absorption. In addition, the optical texture of TCOs can be easily controlled by depositing suspensions of nanostructures before the film deposition. Generally, these nanostructures are nanoparticles or even carbon nanowires or metallic nanowires (silver, copper, ...) and more recently nanowires of TiO2 (presenting the disadvantage of the titanium element) or of undoped ZnO which unfortunately decrease the conductivity due to the increase of the interface resistance with the concentration of the nanoparticles.Therefore, we propose the study of FTO thin films, pure and also in the presence of ZnO and AZO nanofibers by electrospinning from a PVA-based solution in order to have a nanostructured layer with improved transparency and electrical conductivity properties to be integrated as transparent electrodes in photovoltaic cells, meeting the performance criteria defined above. With the characterization techniques available in the LMOPS laboratory and the University of Lorraine (SEM, Raman, EDX, DRX, UV-vis Spectro, ATG, AFM, profilometer) the growth will be followed by morphological and structural studies of the layers. Finally, electrical and optical properties, in particular absorption and scattering factor, will also be extensively investigated on selected layers with the best structural and morphological properties and the minimum of interface defects when deposited on a PV structure
Sam, Francis Laurent Maxime. "Nanometric metal grids as transparent conducting electrodes for OLEDs." Thesis, University of Surrey, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665498.
Full textBormann, Jan Ludwig. "Transparent Silver Nanowire Bottom Electrodes in Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-216346.
Full textOrganische Solarzellen (OSZ) sind ein junges Forschungsgebiet der Photovoltaik, welches neue Anwendungsgebiete erschließt, für die herkömmliche anorganische Solarzellen nicht einsetzbar sind. Einige der Haupteigenschaften sind Flexibilität, niedriges Gewicht, Teiltransparenz und geringe Herstellungskosten. Indiumzinnoxid (ITO), der aktuelle Industriestandard transparenter Elektrodentechnologie, ist nicht in der Lage, diese Eigenschaften zu gewährleisten. Dies liegt vor allem an der Brüchigkeit von ITO und der begrenzten Verfügbarkeit von Indium, welche mit einem hohen Preis einhergeht. Das Ziel dieser Dissertation ist die Integration einer alternativen und vielversprechenden Elektrodentechnologie: Netzwerke aus Silbernanodrähten (AgNWs). Mit einem Schichtwiderstand von 12 Ohm/sq bei einer Transmission von 84% (inklusive Glassubstrat) besitzen sie ähnliche oder sogar bessere optische und elektrische Eigenschaften als ITO. Des Weiteren sind AgNW-Elektroden flexibler und kostengünstiger als ITO und aus flüssiger Phase prozessierbar. Es gibt allerdings zwei Herausforderungen, welche die Integration als Grundelektrode in OSZ erschweren. Zum einen sind AgNW-Netzwerke sehr rauh, sodass organische Bauteile kurzgeschlossen werden. Zum anderen weisen AgNW-Elektroden, im Gegensatz zu einer vollflächigen ITO-Schicht, Lücken zwischen den einzelnen Drähten auf. Diese Lücken müssen von den organischen Schichten der OSZ elektrisch überbrückt werden. Im ersten Teil der Arbeit werden daher flüssigprozessierte Ladungsträgertransportschichten aus kleinen Molekülen untersucht, welche die AgNW-Elektroden glätten und die verhältnismäßig großen Lücken füllen sollen. Im Falle von Lochleitschichten (HTL) wird BF-DPB als Matrix und NDP9 als Dotand in Tetrahydrofuran gelöst und zur Anwendung gebracht. BF-DPB wird dabei schon in Lösung von NDP9 dotiert, wobei sich ein Hybridmolekülkomplex ausbildet. Die Leitfähigkeit der entstehenden Schichten ist ähnlich zu Referenzschichten, die durch thermisches Verdampfen im Hochvakuum hergestellt wurden. Die erhaltenen HTLs glätten die AgNW-Elektroden, sodass DCV5T-Me:C60-Solarzellen mit einer Effizienz von maximal 4.4% hergestellt werden können. Weiterhin wird der Einfluss der quadratmikrometergroßen Löcher auf die makroskopische Effizienz der Solarzelle in Abhängigkeit der HTL Leitfähigkeit untersucht. Um signifikante Effizienzverluste zu verhindern, muss der HTL eine minimale Leitfähigkeit von etwa 1e−4 S/cm aufweisen. Simulationen eines Ersatzschaltkreises bestätigen hierbei die experimentellen Ergebnisse. Im zweiten Teil der Arbeit wird eine Planarisierungsmethode untersucht, in welcher die AgNWs in nichtleitfähigen Polymeren eingebettet werden. Diese Polymere fungieren anschließend als flexibles Substrat. Der optische Kleber ”NOA63” erzielt hierbei die besten Ergebnisse. Die Rauheit der AgNW-Elektroden wird von etwa 30 nm auf 1 bis 3 nm stark reduziert. Anschließend werden diese AgNW-Elektroden in zwei unterschiedlichen OSZ Konfigurationen getestet und mit einer vollflexiblen Schicht aus Aluminiumoxid gegen Wasserdampfpermeation verkapselt. Somit können maximale Effizienzen von 5% mithilfe einer organischen Kaskadenstruktur und 5.6% mit DCV5T-Me:C60 OSZ erreicht werden. Um die Anwendbarkeit dieser vollflexiblen und verkapselten OSZ zu bewerten, werden Alterungsstudien unter konstanter Beleuchtung und feuchtem Klima durchgeführt. Es wird gezeigt, dass die in das Polymer eingebettete AgNW-Elektrode aufgrund von Photooxidation und -schwefelung und Photo- und Elektromigration instabil ist. Dieser Sachverhalt ist für die Anwendung von AgNW-Elektroden in kommerziellen OSZ von großer Bedeutung und wurde in der Forschung bisher nicht ausreichend thematisiert
Yang, Chaobin. "All-Solution-Processed Transparent Conductive Electrodes with Crackle Templates:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108648.
Full textIn this dissertation, I first discuss many different kinds of transparent conductors in Chapter one. In Chapter two, I focus on transparent conductors based on crackle temples. I and my colleagues developed three (one sputter-free and two fully all-solution) methods to fabricate metallic networks as transparent conductors. The first kind of all-solution process is based on crackle photolithography and the resulting silver networks outperform all reported experimental values, including having sheet resistance more than an order of magnitude lower than ITO, yet with comparable transmittance. The second kind of all-solution proceed transparent conductor is obtained by integrating crackle photolithography-based microwires with nanowires and electroplate welding. This combination results in scalable film structures that are flexible, indium-free, vacuum-free, lithographic-facility-free, metallic-mask-free, with small domain size, high optical transmittance, and low sheet resistance (one order of magnitude smaller than conventional nanowire-based transparent conductors)
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Lee, Min-Hsuan. "Solution-processable organic-inorganic hybrid transparent electrode for optoelectronic applications." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/320.
Full textChari, Tarun. "Reduced graphene oxide based transparent electrodes for organic electronic devices." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104534.
Full textCette thèse examine l'utilité de l'oxyde de graphène réduit et de l'hybride oxyde de graphène réduit et nanotubes carbone en fonction d'une utilisation comme électrode transparente. L'oxyde de graphène a été fabriqué par la méthode de Hummers modifié puis a été transféré sur un substrat arbitraire par la méthode de filtration avec suction à vide, et a été réduit chimiquement et thermiquement pour créer des feuilles d'oxyde de graphène réduit qui sont minces et qui couvrent une grande surface. Les feuilles ont été caractérisées par des mesures électriques, optiques, spectroscopiques, et topographiques. Les spectroscopies Raman et par photoélectron induits par rayons-X ont été utilisées pour s'assurer que la fabrication de l'oxyde de graphène reduit a été obtenue. Les électrodes d'oxyde de graphène reduit montrent des résistances de feuille de 10– 100 kΩ/sq avec des transparences entre 60 – 90 %. Pour améliorer ces propriétés, des nanotube de carbone monoparois ont été introduits pendant le processus de filtration pour séparer les nanoplatelets d'oxyde de graphène et pour éviter la déformation structurelle pendant la processus de réduction. Ce dopage de nanotubes a diminué la résistance de feuille par un facteur deux pour des proportion faibles de nanotubes avec l'oxyde de graphène, mais a augmenté la resistance pour les hautes proportions. Les électrodes d'oxyde de graphène reduit et les électrodes hybrides nanotubes/oxyde de graphène reduit ont été utilisées dans des dispositifs optoélectroniques organiques; spécialement des diodes électroluminescentes et des cellules solaires. Les diodes électroluminescentes organiques ont des rendements de courant inferieurs à 1 cd/A et les cellules solaire ont des rendements de puissance inferieurs à 1 % pour les deux types d'életrodes: oxyde de graphène réduit et hybrides.
Wilkins, Ian. "Multilayer composite AZO / AGZO thin films for transparent conductive electrodes." Thesis, Wilkins, Ian (2016) Multilayer composite AZO / AGZO thin films for transparent conductive electrodes. Honours thesis, Murdoch University, 2016. https://researchrepository.murdoch.edu.au/id/eprint/40056/.
Full textKim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.
Full textDie vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Sankaran, Bharat. "Immobilization of biological matter using transparent metal electrodes and silicon microstructures." Fairfax, VA : George Mason University, 2007. http://hdl.handle.net/1920/2929.
Full textTitle from PDF t.p. (viewed Jan. 22, 2008). Thesis director: V. Rao Mulpuri. Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering. Vita: p. 49. Includes bibliographical references (p. 43-48). Also available in print.
Park, Hyesung Ph D. Massachusetts Institute of Technology. "Application of CVD graphene in organic photovoltaics as transparent conducting electrodes." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/84386.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 184-191).
Graphene, a hexagonal arrangement of carbon atoms forming a one-atom thick planar sheet, has gained much attention due to its remarkable physical properties. Apart from the micromechanical cleavage of highly ordered pyrolytic graphite (HOPG), several alternate methods have been explored to achieve reliable and repeatable synthesis of large-area graphene sheets. Among these, the chemical vapor deposition (CVD) process has been demonstrated as an efficient way of producing continuous, large area graphene films and the synthesis of graphene sheets up to 30-inch has been reported. Similar to graphene research, solar cells based on organic materials have also drawn significant attention as a possible candidate for the generation of clean electricity over conventional inorganic photovoltaics due to the interesting properties of organic semiconductors such as high absorption coefficients, light weight and flexibility, and potentially low-cost, high throughput fabrication processes. Transparent conducting electrodes (TCE) are widely used in organic photovoltaics, and metal oxides such as indium tin oxide (ITO) have been commonly used as window electrodes. Usually used as thin films, these materials require low sheet resistance (Rsh) with high transparency (T). Currently the dominant material used in the industry standard is ITO. However, these materials are not ideal options for organic photovoltaic applications due to several reasons: (1) non-uniform absorption across the visible to near infrared region; (2) chemical instability; (3) metal oxide electrodes easily fracture under large bending, and they are not suitable for flexible solar cell applications; (4) limited availability of indium on the earth leading to increasing costs with time. Therefore, the need for alternative/replacement materials for ITO is ever increasing and ideally need to be developed with the following characteristics: low-cost, mechanically robust, transparent, electrically conductive, and ultimately should demonstrate comparable or better performance compared to ITO-based photovoltaic devices. With superior flexibility and good electrical conductivity, as well as abundance of source material (carbon) at lower costs compared to ITO, in this thesis, we propose that the CVD graphene can be a suitable candidate material as TCE in organic photovoltaic applications, satisfying the aforementioned requirements.
by Hyesung Park.
Ph.D.
Zhu, Zhaozhao, and Zhaozhao Zhu. "Emerging Materials for Transparent Conductive Electrodes and Their Applications in Photovoltaics." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/623062.
Full textSannicolo, Thomas. "Transparent electrodes based on silver nanowire networks : electrical percolation, physical properties, and applications." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI073/document.
Full textTransparent electrodes attract intense attention in many technological fields, including optoelectronic devices (solar cells, LEDs, touch screens), transparent film heaters (TFHs) and electromagnetic (EM) applications. New generation transparent electrodes are expected to have three main physical properties: high electrical conductivity, high transparency and mechanical flexibility. The most efficient and widely-used transparent conducting material is currently indium tin oxide (ITO). However the scarcity of indium associated with ITO’s lack of flexibility and the relatively high manufacturing costs have prompted search into alternative materials. With their outstanding physical properties, silver nanowire (AgNW)-based percolating networks appear to be one of the most promising alternatives to ITO. They also have several other advantages, such as solution-based processing, and compatibility with large area deposition techniques. First cost estimates are lower for AgNW based technology compared to current ITO fabrication processes. Unlike ITO, AgNW are indeed directly compatible with solution processes, never requiring vacuum conditions. Moreover, due to very large aspect ratio of the NWs, smaller quantities of raw materials are needed to reach industrial performance criteria.The present thesis aims at investigating important physical assets of AgNW networks – unexplored (or not explored enough) so far – in order to increase the robustness, reliability, and industrial compatibility of such technology. This thesis work investigates first optimization methods to decrease the electrical resistance of AgNW networks. In situ electrical measurements performed during thermal ramp annealing and/or chemical treatments provided useful information regarding the activation process at the NW-NW junctions. At the scale of the entire network, our ability to distinguish NW areas taking part in the electrical conduction from inactive areas is a critical issue. In the case where the network density is close to the percolation threshold, a discontinuous activation process of efficient percolating pathways through the network was evidenced, giving rise to a geometrical quantized percolation phenomenon. More generally, the influence of several parameters (networks density, applied voltage, optimization level) on the electrical and thermal homogeneity and stability of AgNW networks is investigated via a dual approach combining electrical mapping techniques and simulations. A thermal runaway process leading to a vertical crack and associated to electrical failure at high voltage could be visually evidenced via in situ electrical mapping of AgNW networks during voltage plateaus. Moreover many efforts using Matlab and Comsol softwares were devoted to construct reliable models able to fit with experimental results. Due to the increasing demand for portable and wearable electronics, preliminary tests were also conducted to investigate the stretching capability of AgNW networks when transferred to elastomeric substrates. Finally, integrations of AgNW networks in several devices were performed. Specifically, studies were conducted to understand the mechanisms leading to failure in AgNW-based transparent film heaters, and to improve their overall stability. Preliminary investigations of the benefits of incorporating of AgNW networks into electromagnetic devices such as antennas and EM shielding devices are also discussed at the end of the manuscript
Jackson, Roderick Kinte'. "Development of single wall carbon nanotube transparent conductive electrodes for organic electronics." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29635.
Full textCommittee Chair: Graham, Samuel; Committee Member: Garimella, Srinivas; Committee Member: Kippelen, Bernard; Committee Member: Melkote, Shreyes; Committee Member: Ready, Jud. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Morselli, Serena. "Thermally reduced Graphene Oxide: a well promising way to transparent flexible electrodes." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9324/.
Full textMüller, Vesna. "Mesoporous transparent conducting films of antimony doped tin oxide as nanostructured electrodes." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-158995.
Full textLangley, Daniel. "Silver nanowire networks : effects of percolation and thermal annealing on physical properties." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI054/document.
Full textThe use of transparent conductive materials (TCMs) has rapidly increased in the last two decades as a result of increasing demand for personal electronic devices and the development of thin film based solar cells. To date the most commonly used TCM is indium tin oxide (ITO), however indium is a rare earth metal with a complex geopolitical environment surrounding its supply and production. Furthermore the oxide family suffers from poor mechanical properties such as brittleness and generally requires either high temperature synthesis (>400°C) or vacuum processes for their deposition. For these reasons, research in recent years has focused on searching for a TCM to replace ITO. This thesis uses a dual approach combining simulations and experiments to explore the fabrication and optimisation of silver nanowire networks for use as a TCM and to improve the understanding of their physical properties. The simulation component focuses on the application of percolation modelling to 2D nanowire networks while the experimental component explores the electrical and optical properties of silver nanowire networks and their electrical behaviour under thermal annealing. We present in this work the modelling of 2D stick percolation systems initially composed of perfect idealised sticks, and then investigate the influence of parameters such as: length distributions, angular distributions or curved nanowires. We address the divergence of the critical density for the onset of percolation observed for small system sizes and introduce some preliminary work on simulating the collection (or injection) efficiency of charges by a nanowire network. The experimental component provides a discussion of the impact of wire length, wire diameter, network density and fabrication technique on the optical and electrical properties of silver nanowire networks. An in-depth study of the effect of thermal annealing on the networks properties was undertaken which revealed several mechanisms that were responsible for the initial reduction of resistance and final loss of conductivity observed. An original observation enables the revelation of geometrical quantized percolation for rather sparse networks. Finally we conclude that silver nanowire networks are an excellent prospect for a TCM to replace ITO, they have superior mechanical properties and can achieve comparable and even superior electro optical properties
Marikkar, Fathima Saneeha. "Molecular Design of Electrode Surfaces and Interfaces: For Optimized Charge Transfer at Transparent Conducting Oxide Electrodes and Spectroelectrochemical Sensing." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/193952.
Full textMankowski, Trent, and Trent Mankowski. "Integrating Copper Nanowire Electrodes for Low Temperature Perovskite Photovoltaic Cells." Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/624135.
Full textZhang, Di, and 张笛. "Transparent electrode design and interface engineering for high performance organic solar cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/202360.
Full textpublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Liu, Yujing [Verfasser], and Thomas [Akademischer Betreuer] Bein. "Nanostructured transparent conducting oxide electrodes through nanoparticle assembly / Yujing Liu. Betreuer: Thomas Bein." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/102684679X/34.
Full textLagrange, Mélanie. "Physical analysis of percolating silver nanowire networks used as transparent electrodes for flexible applications." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI075/document.
Full textTransparent electrodes (TE) are used in a variety of optoelectrical devices. Among them, solar cells, flat panel displays, touch screens, OLEDs and transparent heaters can be cited. The physical properties of the TE influence the efficiency of the device as a whole. Such electrodes are fabricated from transparent conducting materials (TCM) that have been undergoing development since the 1950s, initially from metallic oxides. Among these transparent conducting oxides (TCO), indium tin oxide (ITO) is the most commonly used in solar cells, and television or smartphone screens. However requirements such as cost reduction, flexibility and low cost/temperature fabrication techniques have oriented the researches toward emerging TCM, mostly using nanostructures. Among them, metallic nanowire networks, and in particular silver nanowires (AgNW), already present optical and electrical properties approaching those of ITO, i.e. a high electrical conductivity and a high transparency. These two properties are intrinsically linked to the network density, therefore a tradeoff has to be considered knowing that when conductivity increases, transparency decreases. Some post-deposition treatments do exist, allowing an increase of the TE electrical conductivity without changing the network density. Several of these optimization methods have been thoroughly studied during this thesis work, especially thermal annealing. This method have been investigated in details to understand the different thermally-induced mechanisms of conductivity improvement. In addition, the investigation of thermal effects raised the question of thermal instability of the nanowires, which is also addressed and discussed in this document. The key issue of density optimization, allowing the best tradeoff between transparency and conductivity, has been investigated for nanowires with different dimensions. Nanowire size has a strong impact on the network properties. Thus, electrical properties, within the framework of percolation theory, optical properties such as transmittance or haziness, and even thermal instability have been linked to the nanowires' dimensions and the network density by using simple physical models. Regarding the application of these emerging TE, studies were conducted on the application of AgNWs as transparent heaters, and the results are reported at the end of the document. Limitations arising from this application, like thermal and electrical stabilities, have also been addressed. To finish, preliminary studies conducted on new applications such as transparent antennas and transparent electromagnetic shielding using AgNW are presented
Pirzado, Azhar Ali Ayaz. "Integration of few kayer graphene nanomaterials in organic solar cells as (transparent) conductor electrodes." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD016/document.
Full textGraphene mate rials have been researched as viable alternatives of transparent conductors electrodes (TCEs) in this thesis. Current study focuses on few layer graphene (FLG), reduced graphene oxide (rGO) and their hybrids with carbon nanotubes (CNTs) for TCE applications inorganic solar cells (OSCs). FLGs and rGOs have been prepared by mechanical and microwave-assisted exfoliation methods. This films of these materials have been produced by hot-spray method. Results of charge transport characterizations by four-point probes, transparency (UV-Vis), measurements, along with morphological (SEM, TEM) and topgraphic (AFM) studies of films have been presented. UPS studies were performed to determine for a work-function. XPS,Raman and Photoluminescence studies have been employed to obtain the information about the structural quality of the samples
Alomairy, Sultan. "Next generation solar cells using flexible transparent electrodes based on silver nanowires and grapheme." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/807954/.
Full textFahmi, Machda. "Durability and Recoverability of Al-doped ZnO Transparent Electrodes Exposed to a Harsh Environment." Kyoto University, 2020. http://hdl.handle.net/2433/259062.
Full textLockwood, Tobias. "Electronic applications of single-walled carbon nanotubes: Electropolymerised transparent electrodes and CNT monolayers on silicon." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86893.
Full textNous avons étudié deux applications basées sur l'utilisation de nanotubes de carbone. Nous avons tout d'abord réalisé des couches conductives et transparentes de nanotubes servant de substrat pour le dépôt électrochimique d'une couche mince de poly(éthylenedioxythiophene). Une telle électrode, ayant les propriétés des nanotubes ainsi que du polymère, devrait être bénéfique pour divers dispositifs organiques. Les électrodes polymère-nanotubes ont été fabriquées avec les SWNTs HipCO et à l'arc électrique sur du verre et sur du plastique; le gain obtenu rapport aux couches déposées par enduction centrifuge en terme de résistance va jusqu'à 100 Ω/sq. Quelques DEL organiques fonctionnelles ont été fabriquées avec succès en utilisant ces électrodes. Ensuite, nous avons synthétisé des couches auto-assemblées de SWNTs sur du silicium, afin d'étudier les propriétés électriques des SWNTs alignés verticalement. Les surfaces de silicium fonctionnalisées avec des groupes hydroxyles ont été liées aux nanotubes par estérification. Les substrats obtenus ont des nanotubes liés à la surface qui sont désordonnés.
Göbelt, Manuela [Verfasser], and Erdmann [Gutachter] Spiecker. "Encapsulated silver nanowire networks for novel indium-free transparent electrodes / Manuela Göbelt ; Gutachter: Erdmann Spiecker." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1154594297/34.
Full textZhu, Zhaozhao, Trent Mankowski, Ali Sehpar Shikoh, Farid Touati, Mohieddine A. Benammar, Masud Mansuripur, and Charles M. Falco. "Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells." SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/622550.
Full textCanestraro, Carla Daniele. "Electrical and optical properties of thin film SnO₂ and SnO₂:F : transparent electrodes in organic photovoltiaics /." Stockholm : Materials Science and Engineering (Materialvetenskap), Kungliga Tekniskan högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4832.
Full textSelzer, Franz Verfasser], Karl [Akademischer Betreuer] [Leo, and Frank [Akademischer Betreuer] Nüesch. "Transparent Electrodes for Organic Solar Cells / Franz Selzer. Betreuer: Karl Leo. Gutachter: Karl Leo ; Frank Nüesch." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://d-nb.info/1095395467/34.
Full textPapanastasiou, Theodora. "Investigation of silver nanowire networks : physical properties, stability and integration into devices." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALI083.
Full textTransparent electrodes are essential components in a huge variety of energy, lighting and heating devices with indium tin oxide being the most efficient and widely used so far. However, due the brittleness and scarcity of indium, an intensive research interest has emerged the last decade towards alternative transparent conductive materials (TCM). Metallic nanowire networks and especially silver nanowire (AgNW) networks appear to be one of the most promising among them, thanks to their excellent electrical and optical properties combined with their excellent mechanical performance and low cost fabrication. Despite the optimization of AgNW network fabrication methods and properties, there are still challenges to be tackled, in order to build a mature technology that can be successfully integrated into devices. The present PhD thesis focuses on the fundamental understanding of the physical phenomena that take place at both scales of nanowires and networks. Combining both experimental and modelling approaches, one of the main goals focuses on the origin of failure in AgNW networks during electrical stress. In situ measurements of the electrical resistance with a parallel recording of the spatial surface temperature by IR imaging are techniques that provide valuable information for the degradation mechanisms in a AgNW network. The simulation of the electrical distribution and power-induced heating offer a deeper understanding of the underlying physics and can be used to predict the networks electrical and heating performances. Moreover, an experimental study, conducted under simultaneous electrical and thermal stress, was useful for the successful integration of AgNW into devices. Based on these data, a physical model was proposed for the prediction of the time of failure, with its dependence with temperature, electrical current and AgNW network density (i.e. electrical resistance). Another crucial parameter that is investigated during this PhD thesis, is the presence of defects and the impact of networks non-homogeneity on the electrical distribution, the dynamics of failure and the surface temperature induced by Joule heating. Furthermore, the enhancement of the AgNW networks stability was successful with the network encapsulation by transparent, protective oxides developed in LMGP by Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD). The AP-SALD is now an emerging open air, low-cost and scalable deposition method and the resulting AgNW-oxide composites retain an excellent flexibility. Finally, during the present PhD thesis, the integration of AgNW networks in devices was studied in the framework of several collaborations and projects with scientific teams of laboratories in Grenoble and elsewhere. Transparent heaters (TH) are in the core of our research and biomedical lab-on-a-chip devices were thoroughly studied. In addition, the increasing interest of the TCM community to the TH, lead our team to write and publish recently a review-article on the topic, including all different technologies and the physics related to Joule heating and the associated applications. Another example of studied integration is the use of the AgNW embedded in polymer substrates, as stretchable electrodes for electrostatic or piezoelectric generators in energy harvesting devices. In the framework of ANR projects with laboratory and industrial partners, we studied the use of AgNWs in cold field emission for miniaturized X-ray sources and as transparent, flexible electrodes in organic photovoltaic. To conclude, the AgNW networks optimized electrical, optical and mechanical properties and their combination with other transparent thin films or 2D materials are highly promising, as well as the growing industrial interest for their implementation. During this PhD Thesis, potential pathways for the stability enhancement and the improvement of the integration into devices have been traced, by means of both experimental and modelling approaches
Müller, Vesna [Verfasser], and Thomas [Akademischer Betreuer] Bein. "Mesoporous transparent conducting films of antimony doped tin oxide as nanostructured electrodes / Vesna Müller. Betreuer: Thomas Bein." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2013. http://d-nb.info/1037311531/34.
Full textIslam, Md Mazharul. "Printed transparent conducting electrodes based on carbon nanotubes (CNTs), reduced graphene oxide (rGO), and a polymer matrix." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-156366.
Full textMadeira, Alexandra. "Amélioration des performances d'électrodes conductrices et transparentes en modifiant le design de nanofils d'argent." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0107/document.
Full textTransparent electrodes are a necessary component in a number of devices such as solar cells,flat panel displays, touch screens and light emitting diodes. The most commonly usedtransparent conductor, indium tin oxide (ITO), is expensive and brittle, the latter propertymaking it inappropriate for up-and-coming flexible devices. Films consisting of randomnetworks of solution-synthesized silver nanowires have emerged as a promising alternative toITO. They have transparency and conductivity values better than competing new technologies(e.g. carbon nanotubes films, graphene, conductive polymers, etc.) and comparable to ITO.Furthermore, these silver nanowire films are cheap, flexible, and compatible with roll-to-rolldeposition techniques. The main objectives of this PhD work are to improve the properties ofsilver nanowire electrodes and to study and solve issues that are currently hindering their usein commercial devices. Specifically, I studied the important areas of electrode conductivity andstability. To increase the conductivity of nanowire electrodes, two silver nanostructuresdifferent from what is commercially available were synthesized i) ultra-long nanowires and (ii)branched nanowires. Regarding (i), by using 1.2-propanediol as the medium rather than thetypical ethylene glycol in the polyol synthesis process, as well as the molecular weight of PVP,the temperature of the process, or the concentration of silver nitrate, we obtained silvernanowires with an aspect ratio between their lengths and diameters of 1050. Among all theultra-long silver nanowires elaborated in polyol process reported in the literature, they have themaximum length. The synthesis developed is also cheap and the reaction time takes less than2h. Moreover, they have a high yield of 2 mg/ml. Electrodes with a sheet resistance of 5 Ω/Sqfor a transparency of 94% were obtained (with post thermal treatment applied). However, thispost-deposition anneal is shown to have a small influence on the decrease of the sheetresistance. It is thus not required to elaborate electrodes with good performance, which is veryadvantageous for the elaboration of electrodes on plastic substrates. Regarding (ii), “V-like shape” or “Y-like branched” nanowires were elaborated thanks to the input of ultrasonicirradiation during the polyol process. Unfortunately, their length being short (6 μm), theirinterest is limited to enhance the performance of transparent electrodes. In addition, structuralanalyses of both branched and unbranched nanowires revealed the nanostructures notmonocrystalline. Concerning the stabilities issues, the thermal stability of silver nanowireelectrodes coated with graphene was investigated. This coating allows a better homogeneity ofthe heat through the network, decreasing the number of hot spots and thus increasing thelifetime of the electrodes. The corrosion of silver nanowire and the resulting electrode resistanceincrease over time is a severe problem hindering their use in commercial devices. 11-mercaptoundecanoic acid (MuA) was identified as a promising passivation agent of silvernanowires. Lifetime testing showed that the electrode resistance increased more slowly (12%)than any other passivated electrodes reported in the literature. Furthermore, unlike many otherpassivation methods, the MuA molecule itself does not negatively affect the conductivity ortransparency of the electrode and is very inexpensive, all contributing to the commercialviability of the passivation method
Bessaire, Bastien. "Fabrication et étude de nanomatériaux 1D conducteurs par électrofilage pour leurs propriétés optoélectroniques." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1175/document.
Full textThe use of transparent and conductive materials has been growing exponentially in the last decade as they are part of many optoelectronic devices such as touch screens and solar cells. Among these materials, Indium-Tin Oxide (ITO) is the market reference since it combines a low resistivity and a high transparency up to 90% in the form of thin film. However, the growing in the development of flexible technologies created a real need in alternatives as ITO has poor mechanical properties. Carbon nanotubes and graphene are potential substitutes, but metallic nanowires and conductive polymers have been developed for their high performances and low cost respectively.This thesis presents the implementation of these alternatives by the original method of electrospinning and the study of their optoelectronic properties. The optimization of the experimental setup (field, rate, environmental parameters) and solutions (rheology, polymer concentration, co-solvents) allowed us to obtain 2 different kinds of nanostructures: fully polymeric with PEDOT:PSS and composite with PVP and silver nanowires. The study of the optoelectronic properties of the resulting networks has also been investigated
Schubert, Sylvio [Verfasser], Lars Akademischer Betreuer] Müller-Meskamp, Karl [Akademischer Betreuer] [Leo, and Marius [Akademischer Betreuer] Grundmann. "Transparent top electrodes for organic solar cells / Sylvio Schubert. Gutachter: Karl Leo ; Marius Grundmann. Betreuer: Lars Müller-Meskamp." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/1070694789/34.
Full textWalker, Erin Kate. "Transparent carbon electrodes for spectroelectrochemical studies." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-08-5954.
Full texttext
Selzer, Franz. "Transparent Electrodes for Organic Solar Cells." Doctoral thesis, 2015. https://tud.qucosa.de/id/qucosa%3A29318.
Full textPei-YingHsieh and 謝佩穎. "Silver Coated PMMA Electrospun Webs by Electroless Plating as Transparent Electrodes." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/90432599140382851228.
Full text國立成功大學
材料科學及工程學系碩博士班
101
This study develops a novel process for transparent electrodes by electrospinning and electroless plating technique. PMMA nanofibers were first electrospun from the solution containing PMMA and silver precursor CF3COOAg. To obtain uniform webs with high transmittance for further electroless plating, the effect of electrospun parameters on morphology and diameter of nanofibers, including polymer concentration, silver precursor concentration, applied voltage, flow rate, and electrospun time was carefully investigated. After forming PMMA webs, silver nanolayer was coated on the surface of nanofibers by a simple silver mirror reaction. To improve the uniformity of silver coating, PMMA nanofibers encapsulated with silver nanoparticles were synthesized by a heat treatment at 100 oC 12h and acted as nucleation sites for the following electroless plating. Moreover, soluble substrates were adopted to ensure that silver could only be deposited on the nanofibers. The silver coated PMMA webs fabricated in this research has the transmittance of 73.1% and the sheet resistance of 16.7Ω/sq. In addition, this composite webs show only 60.5% changes in resistance after bending for 10,000 times and the sheet resistance rate less than 1.3 during a heat storage test at 150oC ,15hours and 90oC,250 hours. By the results of Figure of Merit, the performance of our transparent electrode was better than the graphene and carbon nanotubes. The most important is that we can prepare our thin film at room temperature and ambient pressure, which will have great development potential in the future