Academic literature on the topic 'Transparent oxide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transparent oxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transparent oxide"

1

Li, Peng, Xingzhen Yan, Jiangang Ma, Haiyang Xu, and Yichun Liu. "Highly Stable Transparent Electrodes Made from Copper Nanotrough Coated with AZO/Al2O3." Journal of Nanoscience and Nanotechnology 16, no. 4 (April 1, 2016): 3811–15. http://dx.doi.org/10.1166/jnn.2016.11879.

Full text
Abstract:
Due to their high flexibility, high conductivity and high transparency in a wide spectrum range, metal nanowires and meshes are considered to be two of the most promising candidates to replace the traditional transparent conducting films, such as tin doped indium oxide. In this paper, transparent conducting films made from copper nanotroughs are prepared by the electrospinning of polymer fibers and subsequent thermal evaporation of copper. The advantages of the technique include low junction resistance, low cost and low preparation temperature. Although the copper nanotrough transparent conducting films exhibited a low sheet resistance (19.2 Ω/sq), with a high transmittance (88% at 550 nm), the instability of copper in harsh environments seriously hinders its applications. In order to improve the stability of the metal transparent conducting films, copper nanotroughs were coated with 39 nm thick aluminum-doped zinc oxide and 1 nm thick aluminum oxide films by atomic layer deposition. The optical and electrical measurements show that coating copper nanotrough with oxides barely reduces the transparency of the films. It is worth noting that conductive oxide coating can effectively protect copper nanotroughs from thermal oxidation or acidic corrosion, whilst maintaining the same flexibility as copper nanotroughs on its own.
APA, Harvard, Vancouver, ISO, and other styles
2

Ohta, Hiromichi, and Hideo Hosono. "Transparent oxide optoelectronics." Materials Today 7, no. 6 (June 2004): 42–51. http://dx.doi.org/10.1016/s1369-7021(04)00288-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soma, Takuto, Kohei Yoshimatsu, and Akira Ohtomo. "p-type transparent superconductivity in a layered oxide." Science Advances 6, no. 29 (July 2020): eabb8570. http://dx.doi.org/10.1126/sciadv.abb8570.

Full text
Abstract:
Development of p-type transparent conducting materials has been a challenging issue. The known p-type transparent conductors unsatisfy both of high transparency and high conductivity nor exhibit superconductivity. Here, we report on epitaxial synthesis, excellent p-type transparent conductivity, and two-dimensional superconductivity of Li1−xNbO2. The LiNbO2 epitaxial films with NbO2 sheets parallel to (111) plane of cubic MgAl2O4 substrates were stabilized by heating amorphous films. The hole doping associated with Li+ ion deintercalation triggered superconductivity below 4.2 kelvin. Optical measurements revealed that the averaged transmittance to the visible light of ~100-nanometer-thick Li1−xNbO2 was ~77%, despite the large number of hole carriers exceeding 1022 per cubic centimeter. These results indicate that Li1−xNbO2 is a previously unknown p-type transparent superconductor, in which strongly correlated electrons at the largely isolated Nb 4dz2 band play an important role for the high transparency.
APA, Harvard, Vancouver, ISO, and other styles
4

Minami, Tadatsugu. "Transparent conducting oxide semiconductors for transparent electrodes." Semiconductor Science and Technology 20, no. 4 (March 16, 2005): S35—S44. http://dx.doi.org/10.1088/0268-1242/20/4/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Enoki, Hirotoshi. "Oxide Transparent Electrodes Materials." Materia Japan 34, no. 3 (1995): 344–51. http://dx.doi.org/10.2320/materia.34.344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alivov, Yahya, Vivek Singh, Yuchen Ding, and Prashant Nagpal. "Transparent conducting oxide nanotubes." Nanotechnology 25, no. 38 (September 2, 2014): 385202. http://dx.doi.org/10.1088/0957-4484/25/38/385202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Habis, Christelle, Jean Zaraket, and Michel Aillerie. "Zinc Oxide Thin Film Morphology as Function of Substrate Position During Sputtering Process." Key Engineering Materials 900 (September 20, 2021): 103–11. http://dx.doi.org/10.4028/www.scientific.net/kem.900.103.

Full text
Abstract:
Transparent conductive oxides are materials combining great transparency with high conductivity. In photovoltaic applications, they are developed under thin layer for the realization of upper electrodes of solar cells. Among transparent oxide materials, Zinc Oxide (ZnO) presents unique properties, starting with its first qualities to be abundant, low-cost and non-toxic oxide. Zinc Oxide thin film was deposited on rectangular glass substrate by magnetron sputtering. After an overview of the properties expected for good transparent conductive materials, the effect of distance from the center of the cell on the morphology of the film was investigated by Atomic Force Microscopy (AFM). The scanning was done on different area of the sample as function of the distance from the central position of the direct sputtering jet. As far as the distance increased, it has been noticed a quasi-linear increase in thickness of the ZnO deposited film and a change in the grain shape from spherical to pyramidal with an increase in the size of the particles. Controlling the sputtering distance allows the control of texture, thus of the Haze factor, the photo-generation of excitons, as well the optical transmission of the TCO layer and finally an improvement in the efficiency of the so-built photovoltaic cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Jingping, James Hodge, Arthur J. Boff, and John S. Foord. "Fabrication of Hybrid Diamond and Transparent Conducting Metal Oxide Electrode for Spectroelectrochemistry." International Journal of Electrochemistry 2011 (2011): 1–7. http://dx.doi.org/10.4061/2011/286458.

Full text
Abstract:
A novel diamond transparent electrode is constructed by integrating conductive diamond film and transparent conducting metal oxide to combine the superior electrochemical properties of diamond and the electrical conductivity of transparent metal oxide (TCO). Direct growth of diamond on indium tin oxide (ITO) and aluminium doped zinc oxide (AZO) was explored, but X-ray photoelectron spectroscopy measurement reveals that both substrates cannot survive from the aggressive environment of diamond growth even if the latter is regarded as one of the most stable TCO. As a second route, a diamond membrane in silicon frame was prepared by selective chemical etching, and a diamond optically transparent electrode (OTE) was constructed by assembling the diamond membrane on the top of an ITO-coated substrate. The resulting device exhibits a high optical transparency and quasireversible electrochemical kinetics, which are competitive to other diamond OTEs reported previously. Its application in UV-Vis spectroelectrochemical studies on the oxidisation of 4-aminophenol was demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Jin Hua, Rui Qin Tan, Jia Li, Yu Long Zhang, Ye Yang, and Wei Jie Song. "Thermal Stability of Aluminum Doped Zinc Oxide Thin Films." Materials Science Forum 685 (June 2011): 147–51. http://dx.doi.org/10.4028/www.scientific.net/msf.685.147.

Full text
Abstract:
Transparent conductive oxides are key electrode materials for thin film solar cells. Aluminum doped zinc oxide has become one of the most promising transparent conductive oxide (TCO) materials because of its excellent optical and electrical properties. In this work, aluminum doped zinc oxide thin films were prepared using RF magnetron sputtering of a 4 at% ceramic target. The thermal stability of aluminum doped zinc oxide thin films was studied using various physical and structural characterization methods. It was observed that the electrical conductivity of aluminum doped zinc oxide thin films deteriorated rapidly and unevenly when it was heated up to 350 °C. When the aluminum doped zinc oxide thin films were exposed to UV ozone for a short time before heating up, its thermal stability and large area homogeneity were significantly improved. The present work provided a novel method for improving the durability of aluminum doped zinc oxides as transparent conductive electrodes in thin film solar cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Won Jin, Sung Jin Kim, Alexander N. Cartwright, and Paras N. Prasad. "Photopatternable transparent conducting oxide nanoparticles for transparent electrodes." Nanotechnology 24, no. 6 (January 22, 2013): 065302. http://dx.doi.org/10.1088/0957-4484/24/6/065302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Transparent oxide"

1

Gillispie, Meagen Anne. "Metal oxide-based transparent conducting oxides." [Ames, Iowa : Iowa State University], 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lajn, Alexander. "Transparent rectifying contacts on wide-band gap oxide semiconductors." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102799.

Full text
Abstract:
Die vorliegenden Arbeit befasst sich mit der Herstellung und Charakterisierung von transparenten Metall-Halbleiter- Feldeffekttransistoren. Dazu werden im ersten Kapitel transparente gleichrichtende Kontakte, basierend auf dem Konzept von Metalloxidkontakten, hergestellt und im Hinblick auf chemische Zusammensetzung des Kontaktmaterials, Barriereninhomogenität und Kompatibilität mit amorphen Halbleitern untersucht. Außerdem wird die Anwendbarkeit der Kontakte als UV-Sensor studiert. Im zweiten Kapitel werden transparente leitfähige Oxide vorgestellt und insbesondere deren optische und elektrische Eigenschaften in Abhängigkeit von den Herstellungsbedingungen studiert. Das dritte Kapitel beinhaltet Untersuchungen zu transparenten Feldeffektransistoren, die auf den im ersten Kapitel untersuchten transparenten gleichrichtenden Kontakten basieren (TMESFETs). Insbesondere die elektrischen Stabilität der Bauelemente hinsichtlich Beleuchtung, erhöhten Temperaturen und Spannungsstress wird untersucht. Auch die Langzeitstabilität, Reproduzierbarkeit und der Effekt gepulster Spannungen wird betrachtet. Weiterhin wird die Verwendung amorpher Halbleiter im Kanal und damit auch die Herstellung flexibler Transistoren auf Folie demonstriert. Zuletzt werden die TMESFETs integriert und als Inverterschaltkreise aufgebaut und untersucht. Außerdem wird die Eignung der Transistoren zur Messung von Aktionspotentialen von Nervenzellen studiert.
APA, Harvard, Vancouver, ISO, and other styles
3

Boltz, Janika [Verfasser]. "Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides / Janika Boltz." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1019850485/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Le, Boulbar Emmanuel. "Croissance par ablation laser pulsé de nouvelles phases d'oxyde de titane pour l'électronique transparente et la conversion de photons." Phd thesis, Université d'Orléans, 2010. http://tel.archives-ouvertes.fr/tel-00667730.

Full text
Abstract:
Le photovoltaïque nécessite de nouveaux matériaux pour diminuer ces coûts et améliorer les rendements. Ces travaux de thèse ont concerné le développement de nouvelles phases d'oxyde de titane pour l'électronique transparente et la conversion de photon appliquée au PV silicium. L'ablation laser pulsé est une méthode de croissance particulièrement adaptée pour la prospection de matériaux aux propriétés innovantes. Le contrôle des phases anatase, rutile et d'une phase de composition TiO1.45 épitaxié en fonction de la pression partielle d'oxygène a permis de réaliser des films aux propriétés électriques, optiques innovantes. Un film biphasé anatase/rutile dopé niobium (TNO1.80) présente ainsi une transition métal-semi-conducteur aux alentours de 68K. Par ailleurs, le film de composition TiO1.45 épitaxié s'est révélé être un oxyde transparent conducteur de type p. La découverte de ce nouveau p-TCOs a été valorisée et validée par l'élaboration d'une homojonction p - n transparente. Les matrices d'oxyde de titane rutile et anatase ont également été utilisées pour accueillir des ions terres rares Ln3+ afin de convertir les photons ultra-violet du spectre solaire incident vers le proche infrarouge (800 > λ > 1100 nm). Le transfert d'énergie des matrices TiO2 vers les dopants Ln3+ a été étudié en fonction de la structure, de la quantité de dopant ainsi que la qualité de la microstructure des films dopés Ln3+ (Ln3+=Pr3+,Tm3+,Eu3+,Yb3+,Nd3+).
APA, Harvard, Vancouver, ISO, and other styles
5

Isherwood, Patrick J. M. "Development of transparent conducting oxides for photovoltaic applications." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/18886.

Full text
Abstract:
Metal oxides are a very important class of materials with a wide range of photovoltaic applications. Transparent conducting oxides (TCOs) are the primary front contact materials used in thin film solar cells. Identification of methods for reducing the resistivity of these materials would have significant benefits. Development of p-type TCOs would provide alternative back contact materials and could enable further development of technologies such as bifacial, window and multijunction cells. A series of studies into these areas is presented in this work. Aluminium doped zinc oxide (AZO) is a well-known n-type TCO consisting entirely of Earth-abundant materials. Targets were manufactured from AZO powder, which was synthesised using a patented emulsion detonation process developed by Innovnano S.A. All films showed good optical transmission. Resistivity was found to decrease with both increasing time and temperature up to 300 degree C. Temperatures above 300 degree C were found to be detrimental to film formation, with increasing amounts of damage to the crystal structure and consequent increases in the resistivity. The effect of alloying molybdenum oxide with molybdenum nitride through reactive sputtering in a mixed oxygen-nitrogen atmosphere was investigated. All alloys were found to show p-type behaviour. Resistivity was found to improve with increased nitrogen content, in contrast to optical transmission, which reduced. A selection of compositions were deposited onto CdTe cells as back contacts. These cells showed an increase in efficiency with increasing nitrogen content. Work function was found to increase with increasing oxygen content, but all work functions were low. Resistivity was shown to correlate strongly with efficiency, caused by a corresponding increase in cell voltage. This implies that to form an ohmic contact on CdTe with p-type materials, work function may be less important than resistivity. The copper oxides are p-type, but uses are limited by the narrow band gaps. Cupric oxide was chosen for investigation and for alloying with other oxides with the aim of increasing the band gap. It was found that temperature and deposition environment have significant impacts on sputtered cupric oxide (CuO) films, with low temperatures and high oxygen environments producing the lowest resistivities. Extrinsic sodium doping was found to reduce the resistivity by up to four orders of magnitude. High oxygen content sodium-doped films were found to have carrier concentrations two orders of magnitude higher than that of indium tin oxide.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yujing. "Nanostructured transparent conducting oxide electrodes through nanoparticle assembly." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-149076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Slocombe, Daniel. "The electrical properties of transparent conducting oxide composites." Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/42932/.

Full text
Abstract:
The principal aim of this thesis is the investigation of the electrical properties of conducting pigments provided by Merck KGaA. These pigments are generally micron-sized mica particles coated with a transparent conducting oxide (TCO) and are conventionally dispersed in a polymer matrix at varying volume fractions to form composite structures. To measure the electrical properties of composites and powder materials is not easy since one cannot simply attach terminals as in the measurement of bulk materials. We therefore turn to high frequency techniques, which are capable of measuring composites and powders of conducting particles, but are also capable of measuring non-conducting particles. This thesis therefore has three main themes; 1) the development and use of high frequency measurement techniques for the application to Merck pigments, 2) the investigation of the fundamental electrical properties of TCOs, and 3) the study of the complex electrical behaviour of composites.
APA, Harvard, Vancouver, ISO, and other styles
8

Deyu, Getnet Kacha. "Defect Modulation Doping for Transparent Conducting Oxide Materials." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI071.

Full text
Abstract:
Le dopage des matériaux semi-conducteurs est une partie fondamentale de la technologie moderne. Les oxydes conducteurs transparents (TCO) constituent une famille de semi-conducteurs, qui sont optiquement transparents et électriquement conducteurs. La conductivité électrique élevée est généralement obtenue grâce à un dopage associant des impuretés de substitution hétérovalentes comme dans In2O3 dopé au Sn (ITO), SnO2 dopé au fluor (FTO) et ZnO dopé à l'Al (AZO). Cependant, ces approches classiques ont dans de nombreux cas atteint leurs limites tant en ce qui concerne la densité de porteurs de charge atteignable, que pour la valeur de la mobilité des porteurs de charge. Le dopage par modulation est un mécanisme qui exploite l'alignement de la bande d'énergie à une interface entre deux matériaux pour induire une densité de porteurs de charges libres dans l’un d’entre eux ; un tel mécanisme a permis de montrer dans certains cas que la limitation liée à la mobilité pouvait ainsi était évitée. Cependant, la limite de densité de porteuse ne peut pas être levée par cette approche, du fait de l'alignement des limites de dopage par défauts intrinsèques. Le but de ce travail était de mettre en œuvre cette nouvelle stratégie de dopage pour les TCO. La stratégie repose sur l’utilisation de large bande interdite pour doper la surface des couches de TCO, ce qui résulte à un piégeage du niveau de Fermi pour la phase dopante et à un positionnement du niveau de Fermi en dehors de la limite de dopage dans les TCO. La méthode est testée en utilisant un TCO comme In2O3 non dopé, In2O3 dopé au Sn et SnO2 phase hôte et Al2O3 et SiO2-x en tant que phase de dopant gap à large bande
The doping of semiconductor materials is a fundamental part of modern technology.Transparent conducting oxides (TCOs) are a group of semiconductors, which holds the features of being transparent and electrically conductive. The high electrical conductivity is usually obtained by typical doping with heterovalent substitutional impurities like in Sn-doped In2O3 (ITO), fluorine-doped SnO2 (FTO) and Al-doped ZnO (AZO). However, these classical approaches have in many cases reached their limits both in regard to achievable charge carrier density, as well as mobility. Modulation doping, a mechanism that exploits the energy band alignment at an interface between two materials to induce free charge carriers in one of them, has been shown to avoid the mobility limitation. However, the carrier density limit cannot be lifted by this approach, as the alignment of doping limits by intrinsic defects. The goal of this work was to implement the novel doping strategy for TCO materials. The strategy relies on using of defective wide band gap materials to dope the surface of the TCO layers, which results Fermi level pinning at the dopant phase and Fermi level positions outside the doping limit in the TCOs. The approach is tested by using undoped In2O3, Sn-doped In2O3 and SnO2 as TCO host phase and Al2O3 and SiO2−x as wide band gap dopant phase
APA, Harvard, Vancouver, ISO, and other styles
9

Yavas, Hakan. "Development Of Indium Tin Oxide (ito) Nanoparticle Incorporated Transparent Conductive Oxide Thin Films." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614475/index.pdf.

Full text
Abstract:
Indium tin oxide (ITO) thin films have been used as transparent electrodes in many technological applications such as display panels, solar cells, touch screens and electrochromic devices. Commercial grade ITO thin films are usually deposited by sputtering. Solution-based coating methods, such as sol-gel however, can be simple and economic alternative method for obtaining oxide films and also ITO. In this thesis, &ldquo
ITO sols&rdquo
and &ldquo
ITO nanoparticle-incorporated hybrid ITO coating sols&rdquo
were prepared using indium chloride (InCl3
APA, Harvard, Vancouver, ISO, and other styles
10

Potter, D. "Zinc-based thin films for transparent conducting oxide applications." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10041886/.

Full text
Abstract:
This thesis describes the synthesis of zinc-based transparent conducting oxide (TCO) thin films, as sustainable alternatives to commercial TCOs. There are two main aims to this work. The first is the discovery of suitable TCO materials, which involves finding the optimum optoelectronic properties for applications in photovoltaic devices. The second aim is investigating the scale up of aerosol assisted chemical vapour deposition (AACVD), which is the technique used to deposit the majority of the films in this work. The films deposited in this work were characterised by X-ray diffraction (XRD) to find the crystal structures, X-ray photoelectron spectroscopy (XPS) to find the elemental compositions, scanning electron microscopy (SEM) to analyse the surface morphologies, UV/vis spectroscopy to find the optical properties, and by Hall effect measurements to find the electrical properties. Aluminium, gallium, indium, silicon, and fluorine have been examined as dopants for ZnO, in various combinations, and at different concentrations. The films were generally found to have high transparency, and electrical properties that approached those of industrial TCO materials. The merits of the films are particularly promising, when considering the relative ease through which the films were synthesised. Additionally, the effect of varying the solvent used to make up the precursor solution is investigated. The deposition of ZnSb2O6 thin films via spin coating is also discussed. This thesis also details an investigation into the scale-up of AACVD. An aerosol transport study was performed, whereby the aerosol was transported prior to deposition. It was found that a considerable amount of aerosol was condensing within the tubing, prior to reaching the reactor. Additionally, increasing the film growth rates was investigated by depositing FTO films using high concentrations in the precursor solution. Growth rates of approximately 2 μm min-1 were achieved, making the use of AACVD for commercial applications significantly more feasible.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Transparent oxide"

1

Barquinha, Pedro, Rodrigo Martins, Luis Pereira, and Elvira Fortunato. Transparent Oxide Electronics. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119966999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ellmer, Klaus, Andreas Klein, and Bernd Rech, eds. Transparent Conductive Zinc Oxide. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73612-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barquinha, Pedro. Transparent oxide electronics: From materials to devices. Hoboken, N.J: Wiley, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Symposium, MM "Transparent Conducting Oxides and Applications." Transparent conducting oxides and applications: Symposium held November 29-December 3 [2010], Boston, Massachusetts, U.S.A. Warrendale, Pa: Materials Research Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Molloy, James. Argon and argon-chlorine plasma reactive ion etching and surface modification of transparent conductive tin oxide thin films for high resolution flat panel display electrode matrices. [s.l: The Author], 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tōmei sankabutsu kinō zairyō no kaihatsu to ōyō: Developments and applications of transparent oxides as active electronic materials. Tōkyō: Shīemushī Shuppan, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stadler, Andreas. Analysen fu r Chalkogenid-Du nnschicht-Solarzellen: Theorie und Experimente. Wiesbaden: Vieweg + Teubner, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forum on New Materials (5th 2010 Montecatini Terme, Italy). New materials III: Transparent conducting and semiconducting oxides, solid state lighting, novel superconductors and electromagnetic metamaterials : proceedings of the 5th Forum on New Materials, part of CIMTEC 2010--12th International Ceramics Congress and 5th Forum on New Materials, Montecatini Terme, Italy, June 13-18, 2010. Stafa-Zuerich: Trans Tech Pubs. ltd. on behalf of Techna Group, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nihon Gakujutsu Shinkōkai. Tōmei Sankabutsu Hikari Denshi Zairyō Dai 166 Iinkai ., ed. Tōmei dōdenmaku no gijutsu: Technology of transparent conductive oxide thin-films. 2nd ed. Tōkyō: Ōmusha, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klein, Andreas, Klaus Ellmer, and Bernd Rech. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Transparent oxide"

1

Granqvist, Claes G. "Oxide-Based Electrochromics." In Transparent Electronics, 325–41. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ponce Ortiz, Rocío, Antonio Facchetti, and Tobin J. Marks. "Transparent Metal Oxide Nanowire Electronics." In Transparent Electronics, 243–63. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kykyneshi, Robert, Jin Zeng, and David P. Cann. "Transparent Conducting Oxides Based on Tin Oxide." In Handbook of Transparent Conductors, 171–91. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1638-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fortunato, Elvira, Pedro Barquinha, Gonçalo Gonçalves, Luís Pereira, and Rodrigo Martins. "Oxide Semiconductors: From Materials to Devices." In Transparent Electronics, 141–83. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baratto, Camilla, Elisabetta Comini, Guido Faglia, Matteo Ferroni, Andrea Ponzoni, Alberto Vomiero, and Giorgio Sberveglieri. "Transparent Metal Oxide Semiconductors as Gas Sensors." In Transparent Electronics, 417–42. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hosono, Hideo. "Transparent Oxide Semiconductors: Fundamentals and Recent Progress." In Transparent Electronics, 31–59. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ellmer, K., and A. Klein. "ZnO and Its Applications." In Transparent Conductive Zinc Oxide, 1–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73612-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ellmer, K. "Electrical Properties." In Transparent Conductive Zinc Oxide, 35–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73612-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bundesmann, C., R. Schmidt-Grund, and M. Schubert. "Optical Properties of ZnO and Related Compounds." In Transparent Conductive Zinc Oxide, 79–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73612-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klein, A., and F. Säuberlich. "Surfaces and Interfaces of Sputter-Deposited ZnO Films." In Transparent Conductive Zinc Oxide, 125–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73612-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transparent oxide"

1

Weber, Richard, Jean Tangeman, Kirsten Hiera, Richard Scheunemann, and Jungyun Kim. "New infrared transparent oxide glasses." In Defense and Security, edited by Randal W. Tustison. SPIE, 2005. http://dx.doi.org/10.1117/12.606914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Esparza, Kevin, Virginia Marañón, Corinna Enríquez, Héctor Pérez Ladrón de Guevara, Jesús Castañeda, Ruben Rodríguez, Rita Patakfalvi, Enrique Rosendo, and Roberto Y. Sato. "Synthesis and characterization of SnO2/graphene transparent conducting films." In Oxide-based Materials and Devices X, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2508030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nathan, Arokia, Chen Jiang, Xiang Cheng, Guangyu Yao, Hanbin Ma, and Hyung Woo Choi. "Transparent and Flexible Oxide Nano-Electronics." In 2018 International Flexible Electronics Technology Conference (IFETC). IEEE, 2018. http://dx.doi.org/10.1109/ifetc.2018.8584028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Ho Wai Howard. "Gate-tunable Transparent Conducting Oxide Plasmonics." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/noma.2015.nm2c.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Limmer, Steven J., Katsunori Takahashi, and Guozhong Cao. "Electrochromic and transparent conducting oxide nanorods." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Guozhong Cao, Younan Xia, and Paul V. Braun. SPIE, 2003. http://dx.doi.org/10.1117/12.505864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cao, Feng, Zhenyu Song, Yupeng An, Baojia Guo, Lei Li, and Yiding Wang. "Highly transparent and conductive Tantalum-doped ZnO films prepared by radio frequency sputtering." In Oxide-based Materials and Devices. SPIE, 2010. http://dx.doi.org/10.1117/12.841286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bonfert, Detlef, Dieter Hemmetzberger, Gerhard Klink, Karlheinz Bock, Paul Svasta, and Ciprian Ionescu. "Electrical stress on transparent conductive oxide layer." In 2013 36th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2013. http://dx.doi.org/10.1109/isse.2013.6648225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Byung-Kee, Yong-Ha Song, and Jun-Bo Yoon. "Indium Tin Oxide (ITO) Transparent MEMS Switches." In 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2009. http://dx.doi.org/10.1109/memsys.2009.4805340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perkins, J. D., J. J. Berry, M. F. A. M. van Hest, A. N. Cavendor, A. J. Leenheer, R. P. O'Hayre, and D. S. Ginley. "Transparent conducting oxide development for electronics applications." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Malasi, A., H. Taz, A. Farah, M. Patel, B. Lawrie, R. Pooser, A. Baddorf, G. Duscher, and R. Kalyanaraman. "Novel Iron-Based Amorphous Transparent Conducting Oxide." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.jth2a.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Transparent oxide"

1

Silverman, Gary S., Martin Bluhm, James Coffey, Roman Korotkov, Craig Polsz, Alexandre Salemi, Robert Smith, et al. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1020548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martin Bluhm, James Coffey, Roman Korotkov, Craig Polsz, Alexandre Salemi, Robert Smith, Ryan Smith, et al. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1018511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mason, T. O., R. P. H. Chang, T. J. Marks, and K. R. Poeppelmeier. Improved Transparent Conducting Oxides for Photovoltaics: Final Research Report, 1 May 1999--31 December 2002. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/15004838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Improved Transparent Conducting Oxides Boost Performance of Thin-Film Solar Cells (Fact Sheet). Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1009294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography