Academic literature on the topic 'Transparent oxide semiconductors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transparent oxide semiconductors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transparent oxide semiconductors"
Minami, Tadatsugu. "Transparent conducting oxide semiconductors for transparent electrodes." Semiconductor Science and Technology 20, no. 4 (2005): S35—S44. http://dx.doi.org/10.1088/0268-1242/20/4/004.
Full textOhta, Hiromichi, Kenji Nomura, Hidenori Hiramatsu, et al. "Frontier of transparent oxide semiconductors." Solid-State Electronics 47, no. 12 (2003): 2261–67. http://dx.doi.org/10.1016/s0038-1101(03)00208-9.
Full textKing, P. D. C., and T. D. Veal. "Conductivity in transparent oxide semiconductors." Journal of Physics: Condensed Matter 23, no. 33 (2011): 334214. http://dx.doi.org/10.1088/0953-8984/23/33/334214.
Full textFortunato, Elvira, Alexandra Gonçalves, António Marques, et al. "Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devices." Materials Science Forum 514-516 (May 2006): 3–7. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.3.
Full textHosono, Hideo, Masahiro Yasukawa, and Hiroshi Kawazoe. "Novel oxide amorphous semiconductors: transparent conducting amorphous oxides." Journal of Non-Crystalline Solids 203 (August 1996): 334–44. http://dx.doi.org/10.1016/0022-3093(96)00367-5.
Full textAfre, Rakesh A., Nallin Sharma, Maheshwar Sharon, and Madhuri Sharon. "Transparent Conducting Oxide Films for Various Applications: A Review." REVIEWS ON ADVANCED MATERIALS SCIENCE 53, no. 1 (2018): 79–89. http://dx.doi.org/10.1515/rams-2018-0006.
Full textHan, Seung-Yeol, Doo-Hyoung Lee, Gregory S. Herman, and Chih-Hung Chang. "Inkjet-Printed High Mobility Transparent–Oxide Semiconductors." Journal of Display Technology 5, no. 12 (2009): 520–24. http://dx.doi.org/10.1109/jdt.2009.2024330.
Full textPhilip, J., A. Punnoose, B. I. Kim, et al. "Carrier-controlled ferromagnetism in transparent oxide semiconductors." Nature Materials 5, no. 4 (2006): 298–304. http://dx.doi.org/10.1038/nmat1613.
Full textNathan, Arokia, Sungsik Lee, Sanghun Jeon, Ihun Song, and U.-In Chung. "Transparent Oxide Semiconductors for Advanced Display Applications." Information Display 29, no. 1 (2013): 6–11. http://dx.doi.org/10.1002/j.2637-496x.2013.tb00577.x.
Full textMinami, Tadatsugu. "New n-Type Transparent Conducting Oxides." MRS Bulletin 25, no. 8 (2000): 38–44. http://dx.doi.org/10.1557/mrs2000.149.
Full textDissertations / Theses on the topic "Transparent oxide semiconductors"
Lajn, Alexander. "Transparent rectifying contacts on wide-band gap oxide semiconductors." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102799.
Full textSong, Dengyuan Centre for Photovoltaic Engineering UNSW. "Zinc oxide TCOs (Transparent Conductive Oxides) and polycrystalline silicon thin-films for photovoltaic applications." Awarded by:University of New South Wales. Centre for Photovoltaic Engineering, 2005. http://handle.unsw.edu.au/1959.4/29371.
Full textErslev, Peter Tweedie 1979. "The electronic structure within the mobility gap of transparent amorphous oxide semiconductors." Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10566.
Full textTransparent amorphous oxide semiconductors are a relatively new class of materials which show significant promise for electronic device applications. The electron mobility in these materials is at least ten times greater than that of the current dominant material for thin-film transistors: amorphous silicon. The density of states within the gap of a semiconductor largely determines the characteristics of a device fabricated from it. Thus, a fundamental understanding of the electronic structure within the mobility gap of amorphous oxides is crucial to fully developing technologies based around them. Amorphous zinc tin oxide (ZTO) and indium gallium zinc oxide (IGZO) were investigated in order to determine this sub-gap structure. Junction-capacitance based methods including admittance spectroscopy and drive level capacitance profiling (DLCP) were used to find the free carrier and deep defect densities. Defects located near insulator-semiconductor interfaces were commonly observed and strongly depended on fabrication conditions. Transient photocapacitance spectroscopy (TPC) indicated broad valence band-tails for both the ZTO and IGZO samples, characterized by Urbach energies of 110±20 meV. These large band-tail widths imply that significant structural disorder exists in the atomic lattice of these materials. While such broad band-tails generally correlate with poor electronic transport properties, the density of states near the conduction band is more important for devices such as transistors. The TPC spectra also revealed an optically active defect located at the insulator-semiconductor junction. Space-charge-limited current (SCLC) measurements were attempted in order to deduce the density of states near the conduction band. While the SCLC results were promising, their interpretation was too ambiguous to obtain a detailed picture of the electronic state distribution. Another technique, modulated photocurrent spectroscopy (MPC), was then employed for this purpose. Using this method narrow conduction band-tails were determined for the ZTO samples with Urbach energies near 10 meV. Thus, by combining the results of the DLCP, TPC and MPC measurements, a quite complete picture of the density of states within the mobility gap of these amorphous oxides has emerged. The relationship of this state distribution to transistor performance is discussed as well as to the future development of device applications of these materials.
Committee in charge: Stephen Kevan, Chairperson, Physics; J David Cohen, Member, Physics; David Strom, Member, Physics; Jens Noeckel, Member, Physics; David Johnson, Outside Member, Chemistry
Lim, Sang-Hyun. "Characterization of p-type wide band gap transparent oxide for heterojunction devices." Amherst, Mass. : University of Massachusetts Amherst, 2009. http://scholarworks.umass.edu/dissertations/AAI3359903/.
Full textSacchetti, Allegra. "Novel transparent and flexible transistors for radiation harsh environment." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9204/.
Full textLiu, Hanxiao. "Studies of efficient and stable organic solar cells based on aluminum-doped zine oxide transparent electrode." HKBU Institutional Repository, 2014. https://repository.hkbu.edu.hk/etd_oa/34.
Full textArumskog, Pär. "A Combinatorial Chemistry Approach to the Amorphous Al-In-Zn-O Transparent Oxide Semiconductor System." Thesis, Linköpings universitet, Plasma och beläggningsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78673.
Full textLajn, Alexander [Verfasser], Marius [Akademischer Betreuer] Grundmann, Marius [Gutachter] Grundmann, and Thomas [Gutachter] Riedl. "Transparent rectifying contacts on wide-band gap oxide semiconductors / Alexander Lajn ; Gutachter: Marius Grundmann, Thomas Riedl ; Betreuer: Marius Grundmann." Leipzig : Universitätsbibliothek Leipzig, 2013. http://d-nb.info/1238242154/34.
Full textKim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.
Full textDie vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Zhang, Kelvin Hongliang. "Structural and electronic investigations of In₂O₃ nanostructures and thin films grown by molecular beam epitaxy." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:de125918-b36f-47cc-b72d-2f3a27a96488.
Full textBooks on the topic "Transparent oxide semiconductors"
Barquinha, Pedro. Transparent oxide electronics: From materials to devices. Wiley, 2012.
Symposium, MM "Transparent Conducting Oxides and Applications." Transparent conducting oxides and applications: Symposium held November 29-December 3 [2010], Boston, Massachusetts, U.S.A. Materials Research Society, 2012.
Tōmei sankabutsu kinō zairyō to sono ōyō. Shīemushī, 2006.
Book chapters on the topic "Transparent oxide semiconductors"
Grundmann, Marius. "Transparent Conductive Oxide Semiconductors." In Graduate Texts in Physics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23880-7_20.
Full textGrundmann, Marius. "Transparent Conductive Oxide Semiconductors." In Graduate Texts in Physics. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13884-3_19.
Full textGrundmann, Marius. "Transparent Conductive Oxide Semiconductors." In Graduate Texts in Physics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51569-0_20.
Full textFortunato, Elvira, Pedro Barquinha, Gonçalo Gonçalves, Luís Pereira, and Rodrigo Martins. "Oxide Semiconductors: From Materials to Devices." In Transparent Electronics. John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch6.
Full textBaratto, Camilla, Elisabetta Comini, Guido Faglia, et al. "Transparent Metal Oxide Semiconductors as Gas Sensors." In Transparent Electronics. John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch17.
Full textHosono, Hideo. "Transparent Oxide Semiconductors: Fundamentals and Recent Progress." In Transparent Electronics. John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch2.
Full textCarcia, Peter F. "Application of Transparent Oxide Semiconductors for Flexible Electronics." In Transparent Electronics. John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch11.
Full textHosono, Hideo. "Transparent Amorphous Oxide Semiconductors for Flexible Electronics." In Handbook of Transparent Conductors. Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1638-9_13.
Full textBrotherton, S. D. "Transparent Amorphous Oxide Semiconductor TFTs." In Introduction to Thin Film Transistors. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00002-2_9.
Full text"P-Type Transparent Conductors and Semiconductors." In Transparent Oxide Electronics. John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119966999.ch3.
Full textConference papers on the topic "Transparent oxide semiconductors"
Lee, Dong Uk, Seon Pil Kim, Hyo Jun Lee, et al. "Study on transparent and flexible memory with metal-oxide nanocrystals." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666652.
Full textHerman, G. S., J. S. Rajachidambaram, M. S. Rajachidambaram, et al. "Transparent oxide semiconductors: Recent material developments and new applications." In 2011 IEEE Photonics Conference (IPC). IEEE, 2011. http://dx.doi.org/10.1109/pho.2011.6110668.
Full textLee, Sungsik, Arokia Nathan, and John Robertson. "Challenges in visible wavelength detection using optically transparent oxide semiconductors." In 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411471.
Full textKim, Doyoung, Hyungjun Kim, Jisoon Ihm, and Hyeonsik Cheong. "Transparent conductive oxide film formed with a self textured surface for solar cell application." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666322.
Full textMartinez, Arturo I. "Properties of Transparent Zinc-Tin Oxide Conducting Films Prepared by Chemical Spray Pyrolysis." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994056.
Full textHosono, Hideo. "Transparent amorphous oxide semiconductors: Materials design, electronic structure, and device applications." In 2017 75th Device Research Conference (DRC). IEEE, 2017. http://dx.doi.org/10.1109/drc.2017.7999387.
Full textChatterjee, Neel, Yuhang Sun та Sarah L. Swisher. "Mobility Boost in Transparent Oxide Semiconductors with High-κ Gated TFTs". У 2021 Device Research Conference (DRC). IEEE, 2021. http://dx.doi.org/10.1109/drc52342.2021.9467235.
Full textKim, Byung-Jae, and Youn-Jea Kim. "A Study on the Mechanical Stability of a-IGZO Based Inverter." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87293.
Full textJeon, Hyung Min. "High electrical conducting Si-doped Ga2O3 transparent oxide semiconductor by pulsed laser deposition." In Oxide-based Materials and Devices XII, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2021. http://dx.doi.org/10.1117/12.2584820.
Full textConley, J. F. "Instabilities in oxide semiconductor transparent thin film transistors." In 2009 IEEE International Integrated Reliability Workshop (IRW). IEEE, 2009. http://dx.doi.org/10.1109/irws.2009.5383033.
Full text