Contents
Academic literature on the topic 'Transport – Commande automatique – Dispositifs de sécurité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transport – Commande automatique – Dispositifs de sécurité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Transport – Commande automatique – Dispositifs de sécurité"
Duvieubourg, Luc. "Analyse de séquences d'images linéaires stéréoscopiques : application à la réalisation d'un système de détection d'intrusions intelligent pour les transports guidés." Lille 1, 1991. http://www.theses.fr/1991LIL10015.
Full textStemmelen, Thomas. "Modélisation et identification de systèmes complexes rapides, instables et pseudostables : application à la conception d'une servovalve à commande directe." Mulhouse, 1996. http://www.theses.fr/1996MULH0450.
Full textLauzier, Nicolas. "Mécanismes de sécurité pour l'interaction physique humain-robot : réduction des forces de contact par l'utilisation de limiteurs de couple dans la conception de robots manipulateurs." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28505/28505.pdf.
Full textThis thesis presents the analysis, synthesis, optimization, design and experimental validation of safety mechanisms in the context of physical human-robot interaction. In order to improve safety, which is essential to allow the coexistence of humans and robots, an approach based on the design of intrinsically safe manipulators is preferred to collision avoidance and detection systems for reliability reasons. The maximum contact force occuring during a collision is used as a safety criterion due to its simplicity and validity in the context of robotics. For serial robots, it is proposed to place a torque limiter in series with each actuator whereas for suspended robots, it is preferable to separate the base and the effector with a parallel mechanism in which some joints are replaced with torque limiters --- thereby forming a \emph{Cartesian force limiting device}. The use of such mechanisms allows the reduction of the effective manipulator inertia during a collision without affecting the performances under normal conditions. A model is first created in order to compare --- using simulations --- the safety gains obtained with torque limiters with the ones obtained with other articular safety mechanisms when they are implemented alone or in combination with other safety devices. Methods to optimally control the thresholds of adjustable torque limiters placed in series with each actuator of a serial robot are developed. A kinematic performance index is proposed in order to optimize the pose and architecture of such a robot. The approach and the developed methods are experimentally validated using prototypes of adjustable torque limiters based on friction which are placed in series with each actuator of a four-degree-of-freedom robot. Finally, architectures of Cartesian force limiting devices are proposed and optimized and their effectiveness in the context of suspended robots is experimentally validated.
Loureiro, Rui. "Bond graph model based on structural diagnosability and recoverability analysis : application to intelligent autonomous vehicles." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10079/document.
Full textThis work deals with structural fault recoverability analysis using the bond graph model. The objective is to exploit the structural and causal properties of the bond graph tool in order to perform both diagnosis and control analysis in the presence of faults. Indeed, the bond graph tool enables to verify the structural conditions of fault recoverability not only from a control perspective but also from a diagnosis one. In this way, the set of faults that can be recovered is obtained previous to industrial implementation. In addition, a novel way to estimate the fault by a disturbing power furnished to the system, enabled to extend the results of structural fault recoverability by performing a local adaptive compensation directly from the bond graph model. Finally, the obtained structural results are validated on a redundant intelligent autonomous vehicle
Tréfond, Sabine. "Planification robuste des roulements d’engins dans le domaine ferroviaire." Thesis, Paris, CNAM, 2014. http://www.theses.fr/2014CNAM0921/document.
Full textThis thesis deals with robust rolling-stock planning problems for passenger regional trains. It consists in building robust rolling-stock schedules to operate trains under technical constraints while anticipating operational disturbances that can occur. First of all, we define indicators to characterize robustness in context. We use these indicators to have an effect on solutions that we build. This structural approach is unusual compared to classical robust optimization approaches. We have implemented three methods to solve the problem. A sequential heuristic method enhanced by a local search gives solutions quickly. A column-generation method calculates approximate solutions.An integer linear program is solved exactly to obtain solutions to a global problem. These methods are based on an existing tool at SNCF that optimizes the rolling-stock planning problem to assure optimal production costs. A simulation tool evaluates robustness indicators to compare solutions. Tests on real instances have proved the relevance of the approaches and have lead to the use of a prototype in production
Russo, Jean-Nicola. "Evaluation du risque de téléscopage dans un contexte de véhicules communicants par la méthode des réseaux Bayésiens." Thesis, Mulhouse, 2018. http://www.theses.fr/2018MULH2947.
Full textTechnological advances and the globalization of transport have led to an increase flow of passengers. However, in the automotive sector, technical or human problems lead to accidents that still cause thousands of injuries and deaths each year. As a result, government authorities and car manufacturers are working on new regulations and technical advances to ensure safety of every road user. To ensure that cut of deaths and injuries, an interesting research approach is to merge information from the vehicle, the driver and the environment in order to warn the driver of the risk he is taking or even to act directly on the vehicle. Thus, after defining the risk we consider, we are interested here in its modelling and estimation in real time. In this context, the deceleration of the leading vehicle is monitored and studied then we analyze and process the data through a Bayesian network in order to evaluate the rear-end risk that will be shared through vehicular communication thanks to VANet
Denis, Dieumet. "Contribution à la modélisation et à la commande de robots mobiles reconfigurables en milieu tout-terrain : application à la stabilité dynamique d'engins agricoles." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22565/document.
Full textThis work is focused on the thematic of the maintenance of the dynamic stability of off-road vehicles. Indeed, driving vehicles in off-road environment remains a dangerous and harsh activity because of the variable and bad grip conditions associated to a large diversity of terrains. Driving difficulties may be also encountered when considering huge machines with possible reconfiguration of their mechanical properties (changes in mass and centre of gravity height for instance). As a consequence, for the sole agriculture sector, several fatal injuries are reported per year in particular due to rollover situations. Passive protections (ROllover Protective Structure - ROPS) are installed on tractors to reduce accident consequences. However, protection capabilities of these structures are very limited and the latter cannot be embedded on bigger machines due to mechanical design limitations. Furthermore, driving assistance systems (such as ESP or ABS) have been deeply studied for on-road vehicles and successfully improve safety. These systems usually assume that the vehicle Center of Gravity (CG) height is low and that the vehicles are operating on smooth and level terrain. Since these assumptions are not satisfied when considering off-road vehicles with a high CG, such devices cannot be applied directly. Consequently, this work proposes to address this research problem by studying relevant stability metrics able to evaluate in real time the rollover risk in order to develop active safety devices dedicated to off-road vehicles. In order to keep a feasible industrialization of the conceived active safety device, the use of compatible sensors with the cost of the machines was one of the major commercial and societal requirements of the project. The ambitious goal of this study was achieved by different routes. First, a multi-scale modeling approach allowed to characterize the dynamic evolution of off-road vehicles. This partial dynamic approach has offered the advantage of developing sufficiently accurate models to be representative of the actual behavior of the machine but having a relatively simple structure for high-performance control systems. Then, a comparative study of the advantages and drawbacks of the three main families of metrics found in the literature has helped to highlight the interest of dynamic stability metrics at the expense to categories of so-called static and empirical stability criteria. Finally, a thorough analysis of dynamic metrics has facilitated the choice of three indicators (Longitudinal and Lateral Load Transfer (LLT), Force Angle Stability Measurement (FASM) and Dynamic Energy Stability Measurement (DESM)) that are representative of an imminent rollover risk. The following of the document is based on the observation theory for estimating online of variables which are not directly measurable in off-road environment such as slip and cornering stiffnesses. Coupled to the dynamic models of the vehicle, the theory of observers has helped therefore to estimate in real time the tire-soil interaction forces which are necessaries for evaluating indicators of instability. The coupling of these multiscale models to the observation theory has formed an original positioning capable to break the complexity of the characterization of the stability of vehicles having complex and uncertain dynamics. (...)
Jugade, Shriram. "Shared control authority between human and autonomous driving system for intelligent vehicles." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2507.
Full textRoad traffic accidents have always been a concern to the driving community which has led to various research developments for improving the way we drive the vehicles. Since human error causes most of the road accidents, introducing automation in the vehicle is an efficient way to address this issue thus making the vehicles intelligent. This approach has led to the development of ADAS (Advanced Driver Assistance Systems) functionalities. The process of introducing automation in the vehicle is continuously evolving. Currently the research in this field has targeted full autonomy of the vehicle with the aim to tackle the road safety to its fullest potential. The gap between ADAS and full autonomy is not narrow. One of the approach to bridge this gap is to introduce collaboration between human driver and autonomous system. There have been different methodologies such as haptic feedback, cooperative driving where the autonomous system adapts according to the human driving inputs/intention for the corrective action each having their own limitations. This work addresses the problem of shared control authority between human driver and autonomous driving system without haptic feedback using the fusion of driving inputs. The development of shared control authority is broadly divided into different stages i.e. shared control framework, driving input assessment, driving behavior prediction, fusion process etc. Conflict resolution is the high level strategy introduced in the framework for achieving the fusion. The driving inputs are assessed with respect to different factors such as collision risk, speed limitation,lane/road departure prevention etc in the form of degree of belief in the driving input admissibility using sensor data. The conflict resolution is targeted for a particular time horizon in the future using a sensor based driving input prediction using neural networks. A two player non-cooperative game (incorporating admissibility and driving intention) is defined to represent the conflict resolution as a bargaining problem. The final driving input is computed using the Nash equilibrium. The shared control strategy is validated using a test rig integrated with the software Simulink and IPG CarMaker. Various aspects of shared control strategy such as human-centered, collision avoidance, absence of any driving input, manual driving refinement etc were included in the validation process