Academic literature on the topic 'Transport de turbulence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transport de turbulence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transport de turbulence"

1

Souza, José Francisco Almeida de, José Luiz Lima de Azevedo, Leopoldo Rota de Oliveira, Ivan Dias Soares, and Maurício Magalhães Mata. "TURBULENCE MODELING IN GEOPHYSICAL FLOWS – PART I – FIRST-ORDER TURBULENT CLOSURE MODELING." Revista Brasileira de Geofísica 32, no. 1 (2014): 31. http://dx.doi.org/10.22564/rbgf.v32i1.395.

Full text
Abstract:
ABSTRACT. The usage of so-called turbulence closure models within hydrodynamic circulation models comes from the need to adequately describe vertical mixing processes. Even among the classical turbulence models; that is, those based on the Reynolds decomposition technique (Reynolds Averaged Navier-Stokes – RANS), there is a variety of approaches that can be followed for the modeling of turbulent flows (second moment) of momentum, heat, salinity, and other properties. Essentially, these approaches are divided into those which use the concept of turbulent viscosity/diffusivity in the modeling of
APA, Harvard, Vancouver, ISO, and other styles
2

Kawata, Takuya, and Takahiro Tsukahara. "Spectral Analysis on Transport Budgets of Turbulent Heat Fluxes in Plane Couette Turbulence." Energies 15, no. 14 (2022): 5258. http://dx.doi.org/10.3390/en15145258.

Full text
Abstract:
In recent years, scale-by-scale energy transport in wall turbulence has been intensively studied, and the complex spatial and interscale transfer of turbulent energy has been investigated. As the enhancement of heat transfer is one of the most important aspects of turbulence from an engineering perspective, it is also important to study how turbulent heat fluxes are transported in space and in scale by nonlinear multi-scale interactions in wall turbulence as well as turbulent energy. In the present study, the spectral transport budgets of turbulent heat fluxes are investigated based on direct
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, B. B., G. P. Zank, L. Adhikari, and L. L. Zhao. "On the Conservation of Turbulence Energy in Turbulence Transport Models." Astrophysical Journal 928, no. 2 (2022): 176. http://dx.doi.org/10.3847/1538-4357/ac596e.

Full text
Abstract:
Abstract Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of the Elsässar variables and then taking “moments” subject to various closure hypotheses. The turbulence transport models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show explicitly that the three sets of turbulence transport models admit a conservation representation that resembles the well-known WKB transpor
APA, Harvard, Vancouver, ISO, and other styles
4

Okiy, Karinate Valentine. "A Comparative Analysis of Turbulence Models Utilised for the Prediction of Turbulent Airflow through a Sudden Expansion." International Journal of Engineering Research in Africa 16 (June 2015): 64–78. http://dx.doi.org/10.4028/www.scientific.net/jera.16.64.

Full text
Abstract:
The turbulent airflow in a circular duct with sudden expansion was investigated utilizing three turbulence models. The turbulence models chosen are: the k-epsilon model, the shear stress transport model and the Reynolds-stress model. The performance of the models was investigated with respect to the flow parameter-recirculation length. The turbulent kinetic energy and velocity predictions were compared between the turbulence models and with experimental data, then interpreted on the basis of the recirculation length. From the results, the shear stress transport model predictions of recirculati
APA, Harvard, Vancouver, ISO, and other styles
5

Takuto, Inaba, Nagata Kouji, Sakai Yasuhiko, Suzuki Hiroyuki, Terashima Osamu, and Suzuki Hiroki. "1065 PRODUCTION AND TRANSPORT OF TURBULENT KINETIC ENERGY IN FRACTAL-GENERATED TURBULENCE." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1065–1_—_1065–4_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1065-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Talon, Suzanne. "Rotational Transport Processes." Symposium - International Astronomical Union 215 (2004): 336–45. http://dx.doi.org/10.1017/s0074180900195841.

Full text
Abstract:
In this review, I discuss physical mechanisms leading to momentum and chemical transport in stars. Various instabilities leading to turbulence are discussed. I then present a self-consistent description of rotational mixing under the action of turbulence and meridional circulation in 1D models. Limitations of the model are discussed, both in terms of an extra mechanism for momentum transport in the Sun and solar-type stars (magnetic field and/or gravity waves) and in terms of our understanding of turbulent properties.
APA, Harvard, Vancouver, ISO, and other styles
7

Giacomin, M., and P. Ricci. "Turbulent transport regimes in the tokamak boundary and operational limits." Physics of Plasmas 29, no. 6 (2022): 062303. http://dx.doi.org/10.1063/5.0090541.

Full text
Abstract:
Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent
APA, Harvard, Vancouver, ISO, and other styles
8

Kohli, Atul, and David G. Bogard. "Turbulent Transport in Film Cooling Flows." Journal of Heat Transfer 127, no. 5 (2005): 513–20. http://dx.doi.org/10.1115/1.1865221.

Full text
Abstract:
This experimental study was performed on a single row of round holes with a 35° surface angle, representing film cooling geometry commonly used in turbine engines. Simultaneous velocity and temperature measurements were made using a cold-wire in conjunction with a LDV. The experimentally determined cross correlations provide a direct indication of the extent of turbulent transport of heat and momentum in the flow, which in turn governs dispersion of the film cooling jet. Actual engine environments have elevated mainstream turbulence levels that can severely reduce the cooling capability of fil
APA, Harvard, Vancouver, ISO, and other styles
9

Balbus, Steven A., and John F. Hawley. "Instability, Turbulence, and Enhanced Transport in Accretion Disks." International Astronomical Union Colloquium 163 (1997): 90–100. http://dx.doi.org/10.1017/s0252921100042536.

Full text
Abstract:
AbstractThe nature of MHD and hydrodynamical turbulence in accretion disks is discussed. Comparison is made with planar Couette flow, a classical system prone to nonlinear shear instability resulting in enhanced turbulent transport. Both Keplerian and non-Keplerian hydrodynamical disks are studied, and it is found that only constant angular momentum disks are unstable to nonlinear disturbances and develop enhanced turbulent transport. Convective instabilities do not lead to enhanced turbulent transport. Hydrodynamical Keplerian disks are quite stable to nonlinear disturbances. Several lines of
APA, Harvard, Vancouver, ISO, and other styles
10

Dong, G., and Z. Lin. "Role of wave-particle resonance in turbulent transport in toroidal plasmas." Plasma Physics and Controlled Fusion 64, no. 3 (2022): 035005. http://dx.doi.org/10.1088/1361-6587/ac4275.

Full text
Abstract:
Abstract A clear understanding of wave-particle interaction and associated transport mechanisms of different particle species in the drift wave instabilities is important for accurate modeling and predictions of plasma confinement properties in tokamaks. In particular, the roles of linear resonance and nonlinear scattering in turbulent transport need to be delineated when constructing reduced transport models. First-principle, global gyrokinetic simulations find that electron particle and heat transport decreases to a very low level, while ion heat transport level has no dramatic change when w
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Transport de turbulence"

1

Irvine, Mark Rankin. "Turbulence and turbulent transport above and within coniferous forests." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Newton, Andrew P. L. "Transport in sheared turbulence." Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laenen, François. "Modulation de mélange, transport et turbulence dans des suspensions solides : étude et modélisation." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4010/document.

Full text
Abstract:
Le transport de particules par des écoulements turbulents est un phénomène présent dans de nombreux écoulements naturels et industriels, tels que la dispersion de polluants dans l'atmosphère ou du phytoplancton et plastiques dans et à la surface des océans. Les modèles prédictifs classiques ne peuvent prévoir avec précision la formation de larges fluctuations de concentrations. La première partie de cette thèse concerne une étude de la dispersion turbulente de traceurs émis à partir d'une source ponctuelle et continue. Les fluctuations spatiales de masse sont déterminées en fonction de la dist
APA, Harvard, Vancouver, ISO, and other styles
4

Briard, Antoine. "Modélisation du transport en turbulence homogène." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066201/document.

Full text
Abstract:
La modélisation est essentielle pour comprendre et reproduire les phénomènes physiques dominants ayant lieu dans des écoulements turbulents naturels (atmosphériques, océaniques). En effet, la dynamique des écoulements géophysiques résulte d'interactions complexes à des échelles et intensités variées, et sur des temps différents. La description précise de tels écoulements est pour le moment hors de portée des simulations numériques directes, surtout à cause des limitations en nombre de Reynolds. C'est pourquoi dans cette thèse on s'attaque à la modélisation de la turbulence homogène avec le for
APA, Harvard, Vancouver, ISO, and other styles
5

Raus, David. "Transport sédimentaire sur rugosités immobiles : de l'hydrodynamique locale à la morphodynamique." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/23587/1/Raus_David.pdf.

Full text
Abstract:
Cette étude, en partenariat avec l'AFB (Agence Française pour la Biodiversité), a pour objectif decomprendre le devenir des sédiments qui ont été bloqués dans des barrages hydrauliques. Lorsdes « chasses » (lâchers massifs d’eau) réalisées pour assurer la continuité écologique des coursd'eau avec retenues, une certaine quantité de sédiments est relarguée en aval de la retenue, cessédiments sont ensuite transportés sur un fond de rugosités immobiles à différentes échelles(gravier, galets, rochers). L'objectif de cette thèse est donc d'étudier comment la présence degrains grossiers et immobiles
APA, Harvard, Vancouver, ISO, and other styles
6

Jermyn, Adam Sean. "Turbulence and transport in stars and planets." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/278021.

Full text
Abstract:
In this dissertation I have argued that the study of stars and gaseous planets has relied too heavily on simplifying assumptions. In particular, I have demonstrated that the assumptions of spherical symmetry, thermal equilibrium, dynamical equilibrium and turbulent anisotropy all hide interesting phenomena which make a true difference to the structure and evolution of these bodies. To begin I developed new theoretical tools for probing these phenomena, starting with a new model of turbulent motion which accounts for many different sources of anisotropy. Building on this I studied rotating conv
APA, Harvard, Vancouver, ISO, and other styles
7

Donnel, Peter. "Impurity transport in tokamak plasmas : gyrokinetic study of neoclassical and turbulent transport." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0485/document.

Full text
Abstract:
La compréhension du transport d’impuretés dans les tokamaks est cruciale. En effet, les noyaux lourds ne sont que partiellement ionisés dans le cœur du plasma, ils peuvent alors fortement rayonner et entraîner une diminution importante de la qualité du plasma. Une accumulation des impuretés au cœur du plasma est souvent observée au sein des tokamaks. Cette accumulation est souvent attribuée à la physique néoclassique mais le transport turbulent pourrait bien dominer dans la zone de gradient dans ITER. Jusqu’à récemment, le calcul des flux néoclassique et turbulent étaient réalisés de façon dis
APA, Harvard, Vancouver, ISO, and other styles
8

Cohet, Romain. "Transport des rayons cosmiques en turbulence magnétohydrodynamique." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS051/document.

Full text
Abstract:
Dans cette thèse, nous étudions les propriétés du transport de particules chargées de haute énergie dans des champs électromagnétiques turbulents.Ces champs ont été générés en utilisant le code magnétohydrodynamique (MHD) RAMSES, résolvant les équations de la MHD idéales compressibles. Nous avons développé un module pour générer la turbulence MHD, en utilisant une technique de forçage à grande échelle. Les propriétés des équations de la MHD font cascader l'énergie des grandes échelles vers les petites, développant un spectre en énergie suivant une loi de puissance, appelée zone inertielle. Nou
APA, Harvard, Vancouver, ISO, and other styles
9

黎敦楠 and Tun-nam Lai. "Turbulent transport of airborne pollutant near a low hill." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31227491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Plasting, Stephen Christopher. "Turbulence has its limits : a priori estimates of transport properties in turbulent fluid flows." Thesis, University of Bristol, 2004. http://hdl.handle.net/1983/ca76fd77-e2a3-4eed-8a34-39203e11c84f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Transport de turbulence"

1

Sadayoshi, Tō, ed. Turbulence and transport phenomena. Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Benocci, C. Modelling of turbulent heat transport - a state-of-the-art. von Karman Institute for Fluid Dynamics, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lyn, Dennis A. Turbulence and turbulent transport in sediment-laden open-channel flows. California Institute of Technology, Division of Engineering and Applied Science, W.M. Keck Laboratory of Hydraulics and Water Resources, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rubinstein, Robert. Transport coefficients in weakly compressible turbulence. National Aeronautics Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

M, Redondo J., Staquet Ch, Koch M, and European Geophysical Society, eds. I. Turbulence, diffusion, transport and mixing. Pergamon, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lesieur, Marcel. Turbulence in fluids. 3rd ed. Kluwer Academic Publishers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rainer, Klages, Radons G, and Sokolov Igor M. 1958-, eds. Anomalous transport: Foundations and applications. Wiley-VCH, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tardu, Sedat. Transport and Coherent Structures in Wall Turbulence. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118576663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

S, Potgieter M., COSPAR Scientific Assembly, and COSPAR Scientific Commission D, eds. Heliospheric cosmic ray transport, modulation and turbulence. Published for the Committee on Space Research [by] Elsevier, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

J, Clifford N., French J. R, and Hardisty J. 1955-, eds. Turbulence: Perspectives on flow and sediment transport. Wiley, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Transport de turbulence"

1

Sanjou, Michio. "Turbulence Transport." In Turbulence in Open Channels and River Flows. CRC Press, 2022. http://dx.doi.org/10.1201/9781003112198-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chien, Ning, and Zhaohui Wan. "Turbulence." In Mechanics of Sediment Transport. American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/9780784404003.ch04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsinober, Arkady. "Nonlocality in Turbulence." In Sedimentation and Sediment Transport. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0347-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jovanović, Jovan. "Turbulent transport." In The Statistical Dynamics of Turbulence. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10411-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miyamoto, Kenro. "Plasma Transport by Turbulence." In Plasma Physics for Controlled Fusion. Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49781-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yokoi, Nobumitsu. "Turbulence, Transport and Reconnection." In Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16343-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tardu, Sedat. "Transport Phenomena in Wall Turbulence." In Transport and Coherent Structures in Wall Turbulence. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118576663.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bakunin, Oleg G. "Two-Dimensional Turbulence and Transport." In Chaotic Flows. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20350-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clercx, Herman J. H. "Transport Phenomena in Rotating Turbulence." In Mixing and Dispersion in Flows Dominated by Rotation and Buoyancy. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66887-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gaskin, Susan J., and Khashayar F. Kohan. "The Effect of Background Turbulence on the Dynamics of Turbulent Jets and Entrainment Processes Across the Turbulent/Turbulent Interface." In IUTAM Bookseries. Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78151-3_3.

Full text
Abstract:
AbstractBackground turbulence disrupts the jet structure resulting in its rapid decay (mean velocity and passive scalar concentration) and a reduced entrainment, before jet breakdown when only turbulent diffusion acts. The effect of the background turbulence is characterized by its relative length scale, $$\mathcal {L}$$ L , and turbulence intensity, $$\xi $$ ξ , with $$\xi $$ ξ dominating the jet dynamics in the self-similar region. Large scales of the ambient turbulence advect the jet. Jet breakdown occurs at $$\xi = 0.5$$ ξ = 0.5 , while for $$\xi < 0.5$$ ξ < 0.5 , entrained small sca
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transport de turbulence"

1

Duque, Earl, Pankaj Jha, Jessica Bashioum, and Sven Schmitz. "Turbulence Transport Phenomena in the Wakes of Wind Turbines." In Vertical Flight Society 70th Annual Forum & Technology Display. The Vertical Flight Society, 2014. http://dx.doi.org/10.4050/f-0070-2014-9687.

Full text
Abstract:
A true physical understanding of the subtleties involved in the recovery process of the wake momentum deficit downstream of utility-scale wind turbines in the atmosphere has not been obtained to date. While the wind energy community has now a better understanding of some of the effect of the atmospheric stability state on wind turbine power production and wake recovery within an array of wind turbines, available field data are, in general, not acquired at sufficient spatial and temporal resolution that would allow to dissecting some of the mysteries of wake turbulence. It is here that the Actu
APA, Harvard, Vancouver, ISO, and other styles
2

Caldas, I. L., F. A. Marcus, A. M. Batista, et al. "Turbulence Induced Transport in Tokamaks." In PLASMA AND FUSION SCIENCE: 16th IAEA Technical Meeting on Research using Small Fusion Devices; XI Latin American Workshop on Plasma Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2405962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Horton, W., J. H. Kim, E. Asp, et al. "Drift Wave Turbulence." In TURBULENT TRANSPORT IN FUSION PLASMAS: First ITER International Summer School. AIP, 2008. http://dx.doi.org/10.1063/1.2939032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bieber, John W., and William H. Matthaeus. "Particle transport from a turbulence perspective." In Particle acceleration in cosmic plasmas. AIP, 1992. http://dx.doi.org/10.1063/1.42760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Truong, H. V., John Craig Wells, and Gretar Tryggvason. "TURBULENCE SIMULATION FOR BEDLOAD SEDIMENT TRANSPORT." In Sixth International Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 2009. http://dx.doi.org/10.1615/tsfp6.1380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garbet, X., and Sadruddin Benkadda. "Turbulence scaling laws and transport models." In TURBULENT TRANSPORT IN FUSION PLASMAS: First ITER International Summer School. AIP, 2008. http://dx.doi.org/10.1063/1.2939038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Zhen, Kexin Hu, Xinrong Su, and Xin Yuan. "Data-Driven Turbulence Modeling for Film Cooling Heat Transport, Part I: Turbulent Heat Transport Property at Wide Flow Conditions." In ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/gt2024-125660.

Full text
Abstract:
Abstract Film cooling is an important cooling technique used in modern gas turbines and air engines. It is a typical jet-in-cross-flow problem, where the jet interacts with the mainstream, leading to complex vortex structures and turbulence properties. In this paper, the deviation between RANS and LES data and the turbulent heat transport of film cooling problems are focused. A data-driven framework based on the physics-informed neural network (PINN) is proposed and used to calculate the distribution of the turbulent Prandtl number (Prt) based on the RANS flow field and the LES temperature fie
APA, Harvard, Vancouver, ISO, and other styles
8

Ayed, H., J. Chahed, and V. Roig. "First and second order modelling of turbulent scalar transport in homogeneous turbulence." In Turbulence, Heat and Mass Transfer 5. Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer. Begellhouse, 2006. http://dx.doi.org/10.1615/ichmt.2006.turbulheatmasstransf.730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yan, Huirong, and Alex Lazarian. "Perpendicular transport of cosmic rays in turbulence." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Banerjee, Sanjoy. "TURBULENCE STRUCTURE AND TRANSPORT MECHANISMS AT INTERFACES." In International Heat Transfer Conference 9. Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.2030.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Transport de turbulence"

1

Linn, R. R., T. T. Clark, F. H. Harlow, and L. Turner. Turbulence transport with nonlocal interactions. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/645494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Besnard, D., F. Harlow, R. Rauenzahn, and C. Zemach. Spectral transport model for turbulence. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6807135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guttenfelder, W., S. M. Kaye, W. M. Nevins, et al. Electromagnetic Transport From Microtearing Mode Turbulence. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1010969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spragins, Cisse White. Electrostatic turbulence and transport in the RFP edge. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10148846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spragins, C. W. Electrostatic turbulence and transport in the RFP edge. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5187901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Diamond, Patrick H. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1024908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Besnard, D., F. Harlow, R. Rauenzahn, and C. Zemach. Turbulence transport equations for variable-density turbulence and their relationship to two-field models. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/7271399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cloutman, L. D. Compressible turbulence transport equations for generalized second order closure. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/9097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prof. Sergi Krasheninnikov. Edge, Sol, and Diverter Plasma Turbulence and Macroscopic Transport. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/841026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

T.S. Hahm, P.H. Diamond, Z. Lin, K. Itoh, and S.-I. Itoh. Turbulence Spreading into Linearly Stable Zone and Transport Scaling. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/820109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!