Dissertations / Theses on the topic 'Transport – Méthodes de simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Transport – Méthodes de simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gabella-Latreille, Céline. "Le modele quinquin-fret : un modele de simulation a l'horizon 2015 des flux nationaux de transport de marchandises." Lyon 2, 1997. http://www.theses.fr/1997LYO22024.
Full textThe quinquin fret model is an instrument helping the decision making. It allows is evaluate ex-ante the long term effects of transport policies measures expected by public authorities as to the sncf. The national ton kilometre obtained by road, transport, rail transport or inland navigation can be simulated at a long term toking into account different asseptions related to industrial growth and to modal split factors
Paxion, Sébastien. "Développement d'un solveur multigrille non-structuré parallèle pour la simulation de flammes laminaires en chimie et transport complexes." Châtenay-Malabry, Ecole centrale de Paris, 1999. http://www.theses.fr/1999ECAP0681.
Full textLaliberté, Mathieu. "Modélisation et simulation d'un véhicule servant à l'étude de l'arrimage direct dans le transport d'équipements hors normes." Thesis, Université Laval, 2004. http://www.theses.ulaval.ca/2004/22068/22068.pdf.
Full textSobieraj, Jérémy. "Méthodes et outils pour la conception de systèmes de transport intelligents coopératifs." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLE038/document.
Full textThe car is the most used mode of transport in Europe and North America. Today, it is increasingly secure thanks to driver assistance systems. However, it is still the largest share of road accidents in France, 90 % of which are caused by humans. From 2020, new types of vehicles will appear on the road: they are vehicles whose decision will no longer depend only on the human driver, commonly called autonomous vehicles.To design such systems, three main requirements must be respected at the same time: the safety (respect of traffic laws), the efficiency (go as fast as possible) and the comfort (not to feel in danger in the vehicle). In addition to imagine a vehicle where only on-board sensors provide the necessary information to drive, one can add the ability to communicate with other vehicles or the road infrastructure. This last point have to take into account a fourth requirement, courtesy (does not have a negative impact on surrounding vehicles). It can also help to manage a similar situation where vehicles driven by human beings and autonomous vehicles will be in the same environment.To study these behaviors, computer simulation can be a good solution to set up a range of possible scenarios in different environments. However, this imposes a level of abstraction that can affect the level of realism of the model.In this PhD thesis, we defined methods and tools to define a methodology for designing Cooperative Intelligent Transport Systems. From a vehicle model, we have shown that we can simulate it and then formally check it. From the model obtained, compatibility with a more realistic simulator is ensured. In addition, based on a simulation tool, we have implemented a cooperation protocol that allows vehicles to adapt more easily to current road environments
Ung, Philippe. "Simulation numérique du transport sédimentaire : aspects déterministes et stochastiques." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2019/document.
Full textIn this thesis, we are interested on the study of a sediment transport model through two different approaches. One of them concerns the numerical modelling of the problem and proposes a numerical problem-solving method based on an approximate Riemann solver for the Saint-Venant-Exner system which is one of the most common model to deal with sedimentary bed-load transport. This last one is based on a coupling between the hydraulic model of Saint-Venant and the morphodynamic model of Exner. The key point of the proposed method is the treatment of the coupling issue. Indeed, there exists two strategies; the first one consists on decoupling the resolution of the fluid part from the solid part and making them interact at fixed times whereas the second one considers a coupled approach to solve the system by jointly updating the hydraulic and solid quantities at same times. We then raise the issue of the choice of the strategy for which we suggest answers by comparing both approaches. The other one focuses on the development of a methodology to study the uncertainties related to the model previously mentioned. To this end, we propose a stochastic formulation of the Saint-Venant-Exner system and we look for characterizing the variabilities of the outputs in relation to the naturally random input parameters. This first study reveals the need for a return to the Saint-Venant system with a perturbed bed to understand the sensitivity of the hydraulic quantities on the topographical perturbations
Pruvost, Florent. "Méthodes numériques parallèles pour la simulation des réseaux électriques de grandes tailles." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2012. http://www.theses.fr/2012ECAP0011.
Full textPower system transient stability analysis enables to control the return to equilibrium of the system subjected to a disturbance. This systematic analysis of developing transport networks allows to optimize the production and the consumption of electric power and to protect the equipments such as power plants, transformers, highvoltage lines and so on. In order to improve the stability, the robustness, and the sustainability of these systems, a worldwide trend is to interconnect regional and national transport networks. This leads to analyze ever larger systems. The power-stability problem can be numerically simulated owing to the integration of a differential-algebraic system which is nonlinear and stiff. When considering a very large problem, numerical simulation is very time consuming and significantly slows down the work of professionals. This thesis aims at studying innovative parallel computing methods for the resolution of differential systems arising from the transient stability analysis of large power systems such as the European Transport Network. In this manuscript, we first deliver an analysis of the properties of these rather specific systems: sparse, irregular, nonlinear, stiff, and heterogeneous. We discuss the particular structure of these systems making the application of a domain decomposition method interesting. Thus, we study several space parallelization methods: the fine parallelization of each costly tasks, the resolution of the nonlinear system by decomposition into weakly coupled subnetworks, first on each integration step separately, and then by waveform relaxation method. We also address the time parallelization with a Parareal-based algorithm and a space-time parallel method which benefits from the coupled properties of waveform relaxation and Parareal methods. In this work, we focus on methods which ensure a fast convergence of domain decomposition methods whatever the number of subdomains/processors used. In order to achieve such a goal, we introduce space preconditioning techniques to improve the scalability of the parallelization methods considered
Magni, Adrien. "Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d'équations de transport." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00623128.
Full textCossart, Quentin. "Outils et Méthodes pour l’Analyse et la Simulation de Réseaux de Transport 100 % Electronique de Puissance." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0031/document.
Full textThe development of renewable generation and HVDC links lead to an important increase of the penetration of power electronics in the transmission systems. As Power Electronics converters have completely different physical behavior than synchronous machines, an evolution in the way TSOs control transmission systems is needed. It is impossible to build a real size prototype of a transmission system. The validation of the solutions must be done using dynamic numerical simulations. Because of the size of the studied systems, we have to be careful with the simulation tools that we use, in order to reduce the computation time. In this PhD tools and methods for the analysis and simulation of large transmission systems using 100% power electronics are developed. An important part of the work looks at the models of the converters. Those models allow us to do numerical simulations and to apply and develop stability and performance analysis methods for the considered system. A simple model of the Irish network will be used as an example in order to assess the developed methods
Tillier, Élodie. "Couplage réactions-transport pour la modélisation et la simulation du stockage géologique de CO2." Université de Marne-la-Vallée, 2007. http://www.theses.fr/2007MARN0359.
Full textPainchaud, Maxime, and Maxime Painchaud. "Le transport intrahospitalier : conception et développement d'un modèle de simulation." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/36958.
Full textAfin de supporter les différentes activités au sein d’un centre hospitalier, le département de logistique est primordial pour offrir un service de qualité. Plus particulièrement, un service de brancarderie est nécessaire afin d’acheminer les patients non autonomes ou du matériel aux différentes unités de soins. La planification de ces activités de transport présente d’importants défis, car elle s’opère dans un environnement dynamique et imprévisible. En plus, l’aspect humain des transports apporte son lot de complication. Ce document traitera de la problématique du transport intrahospitalier au Centre Hospitalier Universitaire de Sherbrooke (CHUS). Cet établissement de santé coordonne ses activités de transports par le biais d’un système centralisé affectant des requêtes de transports aux différents brancardiers. L’outil de simulation va permettre de reproduire les flux à l’intérieur d’un établissement cible. Ensuite, le comportement du modèle de simulation sera mesuré et analysé lorsque des modifications au niveau des différents paramètres sont apportées.
Sadri, Saïd. "Simulation du phénomène de transport perpendiculaire en régime statique dans les hétérostructures à puits quantique par le formalisme des fonctions de Green." Lille 1, 1996. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1996/50376-1996-9.pdf.
Full textDepinay, Jean-Marc. "Automatisation de méthodes de réduction de variance pour la résolution de l'équation de transport." Phd thesis, Ecole des Ponts ParisTech, 2000. http://tel.archives-ouvertes.fr/tel-00005592.
Full textDe nombreuses études ont été menées en vue d'accélérer la convergence de ce type d'algorithme. Ce travail s'inscrit dans cette mouvance et vise à rechercher et décrire des techniques d'accélération de convergence facilement implémentables et automatisables. Dans cette thèse, nous nous intéressons à des méthodes d'échantillonage préférentiel. Ces techniques classiques pour les équations de transport utilisent des paramètres qui sont usuellement fixés de façon empirique par des spécialistes. La principale originalité de notre travail est de proposer des méthodes qui s'automatisent facilement. L'originalité de l'algorithme tient d'une part à l'utilisation d'un échantillonage préférentiel sur la variable angulaire (biaisage angulaire), utilisé en plus de l'échantillonage de la variable de position, d'autre part en la description d'une technique de calcul explicite de tous les paramètres dans la réduction de variance. Ce dernier point permet l'automatisation quasi-complète de la procédure de réduction de variance.
Courtey, Sylvain. "Contribution à la modélisation de la phénoménologie des équilibres régissant les atmosphères confinées." La Rochelle, 2007. http://www.theses.fr/2007LAROS218.
Full textDeleuze, Yannick. "Modeling and simulation of transport during acupuncture." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066372/document.
Full textThe objective of this thesis is to comprehend the complexity of the underlying basis of acupuncture. Acupuncture needling is investigated in order to establish a multiscale model that takes into account the complexity of biology but is mathematically simple enough to run simulations.Acupuncture is one of the oldest practices in the history of medicine and is the core of Traditional Chinese Medicine. Once needles are inserted in the right locations, called acupoints, they are manipulated via manual needling to stimulate the acupoint. The physiological reactions of acupuncture needling lead to therapeutic effects which can be explained by a series of interactions between the skin and the nervous, the endocrine, and the immune systems.In the present work, the thrusting and lifting of an acupuncture needle inserted in subcutaneous connective tissue is modeled. A porous media model is used to run simulations and compute the pressure and shear stress affecting the organization of fibers and of isolated cells in their matrix. A mathematical model was conceived to take into account cell signaling. There is ample evidence that needle manipulation in acupuncture can cause degranulation of mastocytes directly through a physical stress to occur. Activated mastocytes rapidly release granules containing chemical mediators. These chemical mediators play a key role recruiting mastocytes in their environment and are known to affect the excitability of nerve endings as well as local microcirculation permeability and size for the appropriate transfer of long-term acting endocrine signals. The process is sustained by the recruitment of mastocytes through chemotaxis
El, Soueidy Charbel-Pierre. "Éléments finis discontinus multi-domaines en temps pour la modélisation du transport en milieu poreux saturé." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/public/theses_doctorat/2008/EL_SOUEIDY_Charbel-Pierre_2008.pdf.
Full textThis work treats the modeling of mass transport in porous media. The advective part of the transport equation is solved using the discontinuous Galerkin (DG) finite element method. In the first part, the discretization of the spatial operator is considered and two approximation spaces are studied and compared for unstructured meshes in 2-D. The temporal discretization is tackled in the second part of this study. Two alternatives to the traditional explicit scheme are presented : a class of semi-implicit schemes and an explicit local time-stepping procedure which allows spatially varying time steps. Finally, the last part of this work consists of using the developed numerical tools to simulate density coupled flow and transport in porous media. The local time procedure is implemented in a 3-D numerical code and numerical experiments show that the model gives accurate results being highly efficient for this kind of problems
Darancet, Pierre. "Théorie et simulation du transport quantique dans les nanostructures." Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00363630.
Full textLefevre, Benoit. "La soutenabilité environnementale des transports urbains dans les villes du sud : Le couple « transport – usage des sols » au cœur des dynamiques urbaines." Paris, ENMP, 2007. http://pastel.paristech.org/3538/01/BLEFEVRE_THESEFINALE_DEF.pdf.
Full textThe objective of this PhD dissertation is to explore if, in view of rapid demographic growth and limited financial capacities, the technologies accessible to poor cities can decrease trajectories of energy consumption and CO2 emissions due to urban transportation. Chapter 1 reviews what we already know of the determinants involved, and their recent evolutions. Chapter 2 analyzes conceivable transport and land-use solutions that would allow southern cities to attain sustainable development trajectories. The conclusions drawn from the first two chapters led us to analyze the interactions between the transport system and land-use system on a particular city, Bogota (Colombia). Chapter 3 studies the functional relations in the “Transport – Land Use” couple and its impact on urban space structuring processes in the long term, from the foundation of Bogota to the end of the 20th century. Chapter 4 focus on the impact of a new transportation infrastructure – the TransMilenio Bus Rapid Transit (BRT) – on real-estate and housing markets, on urban structure and the Origin-Destination trip matrix. Chapter 5 reviews the existing prospective tools able to simulate various combinations of realistic policies, and to measure their consequences on the levels of energy consumption and CO2 emissions related to urban transportation. The integrated urban “Transport – Land Use” model, TRANUS, is chosen and completed with a module of of energy consumption and CO2 emissions quantification, called “Energy Signature of Urban Transportation” (SETU). Chapter 6 tests the capacity of these combinations of policies to affect the trajectories of the energy consumption of urban transportation through the application of TRANUS-SETU on a case study, Bangalore (India)
Ardebili, Réza. "Etude par simulation numérique des phénomènes de transport dans les semiconducteurs à relaxation." Montpellier 2, 1992. http://www.theses.fr/1992MON20288.
Full textIzarra, Léonard De. "Apport des méthodes cinétiques à la simulation d'écoulements dans les milieux poreux." Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2001/document.
Full textThe lattice Boltzmann method (LBM) have been applied very successfully to hydrodynamic flows in porous media. However, the limitation of these methods to isothermal and hydrodynamic flows, make them inadequate to simulate gas flows in micro-porous media. Indeed, in these conditions, the mean free path of the molecules could be of the same magnitude order as the pore size in which gas flows. Such flows will not be in hydrodynamic regime, but in regimes qualified of, slip or transitional ; for which the LBM are no longer valid. On the other hand, the isothermal character of LBM make them unusable, for example, in the case where the gas undergoes expansion through the media. It is then necessary, to take the kinetic point of view to describe such flows and phenomena. The proposed approach is based on the decomposition of the distribution function on the Hermite polynomials basis and the use of Gauss-Hermite quadrature associated with this projection. The systematic nature of this development naturally leads to consider different order of approximation of the Boltzmann-BGK equation in various quadratures. It then follows from these various approximations, a family of discretizations of the Boltzmann-BGK equation, whose classical LBM are a member. Determining the most suitable approximation is achieved by systematic analysis of the results obtained with different approximation orders. These methods are successfully tested in model cases
Valentin, Xavier. "Analyse mathématique et numérique des modèles Pn pour la simulation de problèmes de transport de photons." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLC024/document.
Full textComputational costs for direct numerical simulations of photon transport problemsare very high in terms of CPU time and memory. One way to tackle this issue is todevelop reduced models that a cheaper to solve numerically. There exists number of these models : moments models, discrete ordinates models (SN), diffusion-like models... In this thesis, we focus on PN models in which the transport operator is approached by mean of a truncated development on the spherical harmonics basis. These models are arbitrary accurate in the angular dimension and are rotationnaly invariants (in multiple space dimensions). The latter point is fundamental when one wants to simulate inertial confinment fusion (ICF) experiments where the spherical symmetry plays an important part in the accuracy of the numerical solutions. We study the mathematical structure of the PN models and construct a new numerical method in the special case of a one dimensionnal space dimension with spherical symmetry photon transport problems. We first focus on a linear transport problem in the vacuum. Even in this simple case, it appears in the PN equations geometrical source terms that are stiff in the neighborhood of r = 0 and thus hard to discretise. Existing numerical methods are not satisfactory for multiple reasons : (1) unaccuracy in the neighborhood of r = 0 ("flux-dip"), (2) do not capture steady states (well-balanced scheme), (3) no stability proof. Following recent works, we develop a new well-balanced scheme for which we show the L² stability. We then extend the scheme for photon transport problems within a no moving media, the linear Boltzmann equation, and interest ourselves on its behavior in the diffusion limit (asymptotic-preserving property). In a second part, we consider radiation hydrodynamics problems. Since modelisation of these problems is still under discussion in the litterature, we compare a set of existing models by mean of mathematical analysis and establish a hierarchy. For each model, we focus on the following mathematical properties : (1) energy and impulsion conservation, (2) accuracy of the comobile effects, (3) existence of a mathematical entropy and (4) behavior in the diffusion limit. Our study reduces to « laboratory frame » models and we are still interested in the PN approximation of the transport operator. We identify defects in entropy structure of existing models and propose an entroy correction which leads to PN-based radiation hydrodynamics models which satisfy all the properties listed above
Guyot-Delaurens, Frédérique. "Application de la méthode particulaire déterministe à la simulation du modèle cinétique de dispositifs électroniques inhomogène unidimensionnels." Palaiseau, Ecole polytechnique, 1990. http://www.theses.fr/1990EPXX0001.
Full textVu, Do Huy Cuong. "Méthodes numériques pour les écoulements et le transport en milieu poreux." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112348/document.
Full textThis thesis bears on the modelling of groundwater flow and transport in porous media; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we first apply a semi-implicit standard finite volume method and then the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; we solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We apply the standard finite volume method to compute the solutions of a problem involving a rotating interface between salt and fresh water and of Henry's problem. We then apply the SUSHI scheme to the same problems as well as to a three dimensional saltpool problem. We use adaptive meshes, based upon square volume elements in space dimension two and cubic volume elements in space dimension three. In Chapter 2, we apply the generalized finite volume method SUSHI to the discretization of Richards equation, an elliptic-parabolic equation modeling groundwater flow, where the diffusion term can be anisotropic and heterogeneous. This class of locally conservative methods can be applied to a wide range of unstructured possibly non-matching polyhedral meshes in arbitrary space dimension. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon a priori estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present numerical tests. In Chapter 3, we study a gradient scheme for the Signorini problem. Gradient schemes are nonconforming methods written in discrete variational formulation which are based on independent approximations of the functions and the gradients. We prove the existence and uniqueness of the discrete solution as well as its convergence to the weak solution of the Signorini problem. Finally we introduce a numerical scheme based upon the SUSHI discretization and present numerical results. In Chapter 4, we apply a semi-implicit scheme in time together with a generalized finite volume method for the numerical solution of density driven flows in porous media; it comes to solve nonlinear convection-diffusion parabolic equations for the solute and temperature transport as well as for the pressure. We compute the solutions for a specific problem which describes the advance of a warm fresh water front coupled to heat transfer in a confined aquifer which is initially charged with cold salt water. We use adaptive meshes, based upon square volume elements in space dimension two
Behiri, Walid. "Une méthodologie pour modéliser et optimiser la mutualisation du transport ferroviaire urbain de marchandises et de passagers." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1050/document.
Full textUrban freight transport is almost exclusively carried out by truck. Beyond the drawbacks caused in the city, this transport mode is nearly saturated. This study discusses an alternative way of transporting freight by using urban rail infrastructure. The first contribution deals with the identification and classification of all different sharing possibilities of mixing freight with passenger’s traffic using rail network. The second contribution is the definition of global freight/passenger transport problem, which is decomposed into several optimization interdependent sub-problems with different temporal decision horizon. In order to show the capacity of the global system to absorb an additional flow with different nature, the Freight Rail Transport Schedule Problem “FRTSP” is identified as the bottleneck of transportation system and is formalized with MIP model. As third contribution, this problem determines train and loading time for each demand to be assigned respecting several constraints while minimizing total waiting time. The fourth contribution deals with a discrete event simulation approach, which studies this alternative and validates several proposed decision algorithms. Finally, the fifth contribution consists in a dynamic approach based on a rolling horizon, which is proposed in order to update the initial plan. The updated plan allows to determine a new assignment regarding new demand such as the modifications from the previous plan are minimized
Chami, Mouhcine. "Modélisation et simulation des systèmes multi-physiques à l'aide des réseaux dynamiques hybrides à composants : application à la conversion d'énergie et au transport électrique terrestre." Besançon, 2005. http://www.theses.fr/2005BESA2011.
Full textThe objective of this work is the modeling and simulation of multi-physical systems (electric, mechanical, hydraulic,. . . ) and hybrid systems (characterized by interactions between continuous part and discrete one). To achieve this gaol, we studied two models : The hybrid Bond graph and Component Hybrid Dynamic Nets (CHDN). We find that the last one is particularly adapted to simulation because it integrates the studied system topology and does not pre-processing required for extracting system equations. In addition, the discrete part is represented by Petri nets. For all this reasons, the CHDN is used for SimRDHC conception. The simulator is implemented in a Windows environnement with the DELPHI programming language. SimRDHC is composed in three modules : Graphic interface " Tschema" / Simulator "Srdhc" / Graphic representation "Tcourbe". The three modules are realized so that the conception of simulation tool combines performance and usability. Indeed, the user has a data base in which the components are represented in a graphic form. When the circuit is completed, It can modify the parameters of each component in an interactive way and launch simulation. It can then display the results by choosing the variables in the specific window. Our tool is tested using two applications : An electrical vehicle associating a fuel cell and supercapacitors and an elevator using supercapacitors for power smoothing and power restitution. The results are validated thanks to a comparison with commercial software like MATLAB and SIMPLORER
Medina, Julien. "Transport processes in phase space driven by trapped particle turbulence in tokamak plasmas." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0158.
Full textOne of the most promising approach to controlled nuclear fusion is the tokamak. It is a toroidal machine confining a fusion plasma using magnetic fields. Transport of particles and heat, from the core toward the edges happens spontaneously, degrades the efficiency of the tokamak, and is driven by turbulence. We use a bounce-averaged 4D gyrokinetic code which solves the Vlasov-Quasi-neutrality system. The code is based on a reduced model which averages out the cyclotron and the bounce motion of the trapped particles to reduce the dimensionality. In this work we developed and tested a new module for the code, allowing to track test particle trajectories in phase space. As a first result obtained with test particles, we achieved to separate the diffusive contribution to the radial particle flux in energy space, from the non-diffusive contributions. Both fluxes present an intense peak indicating resonant particles dominate transport. On short period of time the test particles undergo a small scale advection, but on longer times, they follow a random walk process. We then explored with greater accuracy the fluxes in energy space. Furthermore we compared the obtained fluxes with quasi-linear predictions and found a qualitative agreement, although there was a ~50% discrepancy in the peak magnitude
Hafez, Névine. "Conditions d'équilibre et gestion d'unités de transport en libre service avec demandes aléatoires." Metz, 1999. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1999/Hafez.Nevine.SMZ9926.pdf.
Full textWeston, Joseph. "Numerical methods for time-resolved quantum nanoelectronics." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY040/document.
Full textRecent technical progress in the field of quantum nanoelectronics have lead toexciting new experiments involving coherent single electron sources.When quantum electronic devices are manipulated on time scales shorterthan the characteristic time of flight of electrons through the device, a wholeclass of conceptually new possibilities become available. In order totreat such physical situations, corresponding advances in numerical techniquesand their software implementation are required both as a tool to aidunderstanding, and also to help when designing the next generation ofexperiments in this domain.Recent advances in numerical methods have lead to techniques for which thecomputation times scales linearly with the system volume, but as thesquare of the simulation time desired. This is particularly problematicfor cases where the characteristic dwell time of electrons in the centraldevice is much longer than the ballistic time of flight. Here, we proposean improvement to an existing wavefunction based algorithm fortreating time-resolved quantum transport which scales linearly in both thesystem volume and desired simulation time. We use this technique tostudy a number of interesting physical cases. In particular we find that theapplication of a train of voltage pulses to an electronic interferometercan be used to stabilise the dynamical modification of the interferencethat was recently proposed. We use this to perform spectroscopy on Majoranaand Andreev resonances in hybrid superconductor-nanowire structures.The numerical algorithms are implemented as an extension to the Kwantquantum transport software. This implementation is used for all the numericalresults presented here, in addition to other work, covering a wide varietyof physical applications: quantum Hall effect, Floquet topological insulators,Fabry-Perot interferometers and superconducting junction
Houlet, Patrice. "Etude du transport dans un composant unidimensionnel par la méthode des paquets répartis." Montpellier 2, 1995. http://www.theses.fr/1995MON20137.
Full textRymer, Guillaume. "Analyse et modélisation du taux de réaction moyen et des mécanismes de transport en combustion turbulente prémélangée." Châtenay-Malabry, Ecole centrale de Paris, 2001. http://www.theses.fr/2001ECAP0892.
Full textBadeig, Fabien. "Un environnement actif pour la simulation multi-agents : application à la gestion de crise dans les transports." Paris 9, 2010. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2010PA090027.
Full textIn this Ph. D thesis, we propose a model of multi-agent simulation, Eass (Environment as Active Support for Simulation). The originality of this model is to integrate the simulation process in the modeling of the system. When a simulation is designed, the system modeling merges with its implementation in a simulation platform because (1) the activation of agents is managed by a global scheduler and (2) the action phase of agents, which incorporates the action selection mechanism, depends in part on the simulation platform. Our proposal is to outsource the evaluation of the local context of each agent and the selection of agent behavior, managing this assessment in a central entity which is the environment. To achieve this objective, it was necessary to reify the link between the context of an agent and its behavior, thanks to the principle Property-based Coordination which allows the representation and management of information related to the system components. Thus, modeling the system necessitates not only to model the behavior of the agent but also to model the behavior of the simulation taking into account the scheduling process. We built a functional architecture based on our model Eass which details the specifications that a simulation platform has to implement in order to support our model. To illustrate this architecture, two simulation platforms were developed : the rest is based on a coupling of existing tools that are the agent platform MadKit and the expert system generator Jess, the second is a new simulation plateform developed to tackle the limits to the use of existing tools. The application of our simulation model is a problem of crisis management in transport. To model the problem, it was necessary to take into account the organizational and communication constraints arising from the need to involve different services with their own protocols to manage crisis. To address this problem, an extension of the organizational model Moise integrating the modeling of the communication dimension of the organization, is used. We have added the simulation modeling, including the definition of agent behaviors, to this organizational modeling
Armagnat, Pacôme. "Physique quantique et électrostatique auto-cohérentes." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY024/document.
Full textElectrostatic energy is very often the largest energy scale in quantum nanoelectronic systems. Yet, in theoretical work or numerical simulations, the electrostatic landscape is equally often taken for granted as an external potential, which may result in a wrong physical picture. Developing numerical tools that can properly handle the electrostatics and its interplay with quantum mechanics is of utter importance for the understanding of quantum devices in e.g. semi-conducting or graphene like materials.This thesis is devoted to the self-consistent quantum-electrostatic problem. This problem (also known as Poisson-Schr"odinger) is notoriously difficult in situations where the density of states varies rapidly with energy. At low temperatures, these fluctuations make the problem highly non-linear which renders iterative schemes deeply unstable. In this thesis, we present a stable algorithm that provides a solution to this problem with controlled accuracy. The technique is intrinsically convergent including in highly non-linear regimes. Thus, it provides a viable route for the predictive modeling of the transport properties of quantum nanoelectronics devices.We illustrate our approach with a calculation of the differential conductance of a quantum point contact geometry.We also revisit the problem of the compressible and incompressible stripes in the integer quantum Hall regime. Our calculations reveal the existence of a new ”hybrid” phase at intermediate magnetic field that separate the low field phase from the high field stripes.In a second part we construct a theory that describes the propagation of the collective excitations (plasmons) that can be excited in two-dimensional electron gases. Our theory, which reduces to Luttinger liquid in one dimension can be directly connected to the microscopic quantum-electrostatic problem enabling us to make predictions free of any free parameters. We discuss recent experiments made in Grenoble that aim at demonstrating electronic flying quantum bits. We find that our theory agrees quantitatively with the experimental data
Brun, Jean-Marc. "Modèles à complexité réduite de transport pour applications environnementales." Montpellier 2, 2007. http://www.theses.fr/2007MON20248.
Full textA platform of low complexity models for the transport of passive scalars for environmental applications is presented. Multi-level analysis has been used with a reduction in dimension of the solution space at each level. Local spray drift distribution is estimated thanks to the turbulent jet theory and determine the source term. Similitude solutions are used in a non symmetric metric for the transport over long distances. Model parameters identification is based on data assimilation. The approach does not require the solution of any PDE and therefore is mesh free. The model also permits to access the solution in one point without computing the solution over the whole domain
Boutahar, Jaouad. "Méthodes de réduction et de propagation d'incertitudes : application à un modèle de chimie-transport pour la modélisation et la simulation des impacts." Phd thesis, Ecole des Ponts ParisTech, 2004. http://tel.archives-ouvertes.fr/tel-00007557.
Full textLa seconde est relative à la réduction du nombre de simulations demandé par la méthode Monte-Carlo classique de propagation d'incertitude. La technique utilisée ici est basée sur une représentation d'une sortie de modèle incertaine comme un développement de polynômes orthonormaux de variables d'entrées. Un autre point clé dans la modélisation intégrée d'impacts est de développer des stratégies de réduction des émissions en calculant des matrices de transfert sur plusieurs années de simulation. Une méthode efficace de calcul de ces matrices a été ainsi développée, notamment en définissant des scénarios "chimiquement" représentatifs.
L'ensemble de ces méthodes a été appliqué au modèle POLAIR3D, modèle de Chimie-Transport développé dans le cadre de cette thèse.
El, Hmam Mohamed Said. "Contribution à la modélisation et à la simulation hybride du flux de trafic." Artois, 2006. http://www.theses.fr/2006ARTO0206.
Full textThis thesis concerns the hybrid traffic flow modelling and simulation. This approach uses jointly the two classical traffic flow models ; macroscopic and microscopic. It is a matter of adapting the representation to the studied phenomenon. Indeed, the macroscopic model is well adapted to the motorway network representation whereas the microscopic one makes it possible to describe an urban network more finely. Thus, we can obtain detailed information of the traffic state on a crossroads (for example) using the microscopic model and to implement traffic control laws synthesized from a macroscopic one. The final objective is to design and implement a decision-making tool allowing us to test and validate various traffic control strategies. For that, we initially developed a microscopic model founded on the paradigm agent. Then, we have proposed a coupling procedure, which makes it possible to ensure the conservation and the continuity of flow through the transition zone that connect the two worlds ; microscopic and macroscopic. The simulation results of the developed hybrid model show that it is possible to cohabit two models (microscopic and macroscopic) within the same system. To illustrate the relevance of the hybrid model, a traffic flow control application has been proposed. The results show that the vehicles travel total time was reduced. The proposed model represents a first version of a traffic flow hybrid simulator, which will remain to be developed within the furthers works
Fan, Jianhua. "Numerical study of particle transport and deposition in porous media." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0003/document.
Full textThe objective of the present research was to numerically investigate the transport and deposition of particles in porous media at the pore scale. Firstly, a developed coupled lattice Boltzmann method (LBM) and discrete element method (DEM) is used to simulate the fluid-particle flow. LBM is employed to describe the fluid flow around fibers whereas DEM is used to deal with the particle dynamics. The corresponding method is two-way coupling in the sense that particle motion affects the fluid flow and reciprocally. It allowed us to predict the capture efficiency and pressure drop at the initial stage of filtration process. The quality factor is also calculated for determining the filtration performance. Secondly, we focus on the study the capture efficiency of single fiber with circular, diamond and square cross-section, respectively. The results of LBM-DEM for filtration process of single circular fiber agree well with the empirical correlation. The impaction of particles on the front side of square-shaped fiber is more favorable than those on circular and diamond cases. However, diamond fiber exhibits a good filtration performance. Then the variations of quality factor due to the different orientation angle and aspect ratio of rectangular fiber were studied using LBM-DEM. For each case, we have found the optimal value of the windward area to which corresponds a maximum value of the quality factor. The comparison of the performance of the different forms of fibers shows that the largest quality factor is obtained for square fiber oriented with angle π/4.Finally, the influence of the arrangement of fiber on filtration performance is analyzed by considering the staggered configuration. Simulations conducted for several particle size and density show that the diamond with staggered array performs better for large particles and high particle-to-fluid density ratio in terms of quality factor. The present study provide an insight to optimize the filtration process and predict filtration performance
Lorriaux, Etienne. "Etude de méthodes métaheuristiques appliquées à l'optimisation aérodynamique ferroviaire." Valenciennes, 2007. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/ec593272-c953-4cfa-8769-3eb3b82c3fa7.
Full textImproving the quality of railway transport requires higher operational speeds with equivalent security and comfort levels. Under these conditions aerodynamic effects play an important role and can imply conflicting design constraints. This work lays the basis of a global optimization method. This work is based on numerical simulations of trains aerodynamics, demanding substantial computing resources. The complexity of the search space to be explored imposes the use of a flexible and highly efficient optimization process. The study concerns metaheuristic methods and particularly a genetic algorithm relying on a fully automatic process for the flow simulations. The hybrid method, consisting in using a local search method with the general algorithm, are advantageous but are difficult to set up. An original solution is proposed, consisting in incorporating the simplex method in the generation process of a genetic algorithm. This method, called Targeted Generation Simplex, combines the genetic algorithm advantages with the accuracy of the local search and does not need any transitions between each method. The Targeted Generation Simplex has been first validated on classical examples. Therefore, it has been applied to two dimensional profiles representative of railway shapes. Sensitivity with respect to the genetic algorithm characteristics and to the estimator has been studied. The method has been successfully applied to a three dimensional single objective application to demonstrate its feasibility
Fournier, Damien. "Analyse et développement de méthodes de raffinement hp en espace pour l'équation de transport des neutrons." Phd thesis, Aix-Marseille Université, 2011. http://tel.archives-ouvertes.fr/tel-00769546.
Full textOualibouch, Moulay Es-Saïd. "Analyse numérique des méthodes proximales : décomposition et parallélisme." Phd thesis, Grenoble 1, 1992. http://tel.archives-ouvertes.fr/tel-00341794.
Full textOukfif, Samira. "Modélisation numérique du transport de masse et de la filtration dans les milieux poreux saturés." Le Havre, 2010. http://www.theses.fr/2010LEHA0007.
Full textThis work aims is devoted to the development of numerical model in order to simulate the mass transport in homogeneous and heterogeneous porous media. So to guarantee security, a reliable numerical model will be used at long term to predict the progression of pollution in a ground. The model is based on the convection-dispersion equation coupled with a deposition release kinetic. The transport equation in 1D and 2D is resolved by means of a Lagrangian method, called particle method which uses a dispersion velocity technique. The boundary conditions are interpreted with a technique of a ghost particle. Due to the retention and detachment of the particle, the Kozeny-Carman relation is employed to evaluate the porosity variation in the porous media. The sensitivity study of the model is performed by considering a various configurations when analytical solutions are provided and shows a sufficient precision for adequate numerical parameters. The numerical model validation is obtained by fitting the tracer laboratory column under the constant flow or constant flow head conditions. Under the constant flow head, a coupling between the transport equation and flow equation (Darcy’s low) are performed by resolving flow equation using a numerical model of the finite differences on a fixed grid. The coupling between the flow problem and the transport problem is realized with using a non iterative sequential scheme. The exchanges between the grid and the particles are ensured by means of interpolation function. A good fitting is obtained from the numerical results and experiment data measured in the term of breakthrough curves, in particular when the deposition and release kinetic were considered. The constant flow head shows an important reduction of the porosity profiles at the entry of the laboratory column. Then, the numerical model is used to simulate the erosion (suffusion) of a ground by considering only release, and the fitting of the laboratory column showed a good agreement. An interesting alternative to particle tracking random walk random is studied in order to simulate the transport of sorbing solutes in homogeneous and heterogeneous infinite media. The deposition release kinetic is replaced by a nonlinear Freundlich sorption is considered. A stochastic approach which consists in generating many simulations for which flow and transport problems are resolved. The final results are obtained by means of an average on all numerical simulations performed called Monte Carlo approach. The results obtained are in agreement with those presented in the literature. In order to simulate transport, deposition and release in a finite porous media, the numerical model presented in this study allowed the implementation of the particle method. Nevertheless, the model studied of the deposition and release kinetic can be improved in order to take account the coupling between the two processes and in particular the threshold of detachment of the particles
Charles, Frédérique. "Modélisation mathématique et étude numérique d'un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d'accident de perte de vide dans ITER." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2009. http://tel.archives-ouvertes.fr/tel-00463639.
Full textPicot, Géraldine. "Caractérisation et modélisation du transport de polluants dans la zone non saturée : application à une friche industrielle." Artois, 2005. http://www.theses.fr/2005ARTO0209.
Full textThe contaminants accumulated in the first meters of the soil can move vertically, due to the successives infiltrations, towards the groundwater leading to its contamination. The main objective of this work deals with the characterization and the modelling of the spatial and temporary evolution of contaminants from the soil’s surface to the groundwater. This is on includes on one hand : the study of the parameter’s influence on the results of the simulation of flows and transport, and on the other hand this applies to polycyclic aromatic hydrocarbon (PAH) polluted plant coke. The first part of this work helps us to identify six parameters for flow and five for the transport of contaminant whiches have to be estimated for experimental studies. The characterization of these parameters is made either in laboratory or in situ, and the value of some parameters can be obtained according to various methods. These methods of characterization are applied on Gandola’s experiment (1999) and give different values according to the method which is used. From this point of this work, we can wonder what will be the best way to estimate the parameters and also the impact on the results of the simulation which results from this. So, the second part of this work deals with the influence of parameters and models on the results of the flow and transport’s simulation in an unsaturated zone. A first scenario using the characterizated values gives us the numerical results similar to the laboratory results, whiches the point out ther right reasoning of the parameters’ characterization. After making vary the value of the most important parameters (sort of maillage, hydraulic conductivity, porosity, retention’s curve parameters, coefficent of dispersivity and diffusion), what emerges from all that in this study is that : the speed of the flow is sensitive to the values of the hydraulic conductivity and of porosity ; the evolution of concentration only depends on the values of the coefficients of dispersivity. The simulations are sensitive to the sort of retention’s model that is used (Van Genuchten-Mualem, Haverkamp et al. And Brooks & Corey). At last, each one of these models doesn’t make intervene the same number of parameters, which added to the parameters sensitivity becomes a significant selection criteria. The tested laboratory experiments prove to be interesting to validate and to test modelisation’s hypothesis. The conclusions provided by the second part enable to better apprehend the study of the real case : The waste land of an old plant coke. Which is studied in the last part of this work made three steps, the first witth regard to the collection of avaible informations, then the second step explains in detail the investigation campaign giving informations on the unsaturated zone estimated from 1,5 m to 5 m deep. The synthesis of those two steps enables the realization of a third one which deals with the modelisation of the unsaturated zone of the industrial wasteland. Five main slice are recognized on the site, characterizated and then put together in different scenario (of 5 meters deep) whiches are simulated. All of them are made up of the same contaminated source, of the same flux coming in (at the top) and of a constant and identical hydraulic head in the froundwater. The results of the simulation aver ten years enable us to estimate the portion of the contaminant getting to the groundwater but also to appreciate the importance of taking the unsaturated zone and its composition into account, in a study of the groundwater’s contamination by a polluted source placed on the surface of the soil. What emerges from all that is that the physical and hydrical characterization of the sort of the soil containing the contaminating source produces a difference in the transfer ‘s speed of the contaminants to the grounwater. This variation is more negligible according to the sort of soil constituting the underlying zone. So it is important in such a study to characterize the embankment constituting the first meters, as well as the stratification of the unsaturated zone on this sort of site
Peyroux, Julien. "Simulations numériques de l'équation de Vlasov à l'aide d'outils parallèles." Nancy 1, 2005. http://docnum.univ-lorraine.fr/public/SCD_T_2005_0114_PEYROUX.pdf.
Full textThe problems related to a laser-matter interaction or turbulence in takomak plasmas encountered in magnetic fusion call for a study of not strongly linear/relativist Vlasov plasmas. It becomes necessary to use powerful tools for simulation on powerful computers in order to better include/understand the physical mechanisms put in play in these two domains. The development of nonparticular (or more exactly semi-Lagrangian) methods for the resolution of kinetic equations and, in particular, for the study of the wave-particle interactions remain a particularly promising way, taking into account the importance of results already obtained. This project aims to make even more powerful the resolution of Vlasov codes through the various parallelisation tools (MPI, OpenMP. . . ). For our work, a simplified ``test case'' served for us as a base for constructing the parallel codes for obtaining a data-processing skeleton which, thereafter, could be re-used for increasingly complex models (more than four variables of phase space). What will thus make it possible to treat more realistic situations linked, for example, to the injection of ultra short and ultra intense impulses in inertial fusion plasmas, or the study of the instability of trapped ions now taken as being responsible for the generation of turbulence in tokamak plasmas
Jaffar-Bandjee, Mourad. "Pheromone transport in multiscale pectinate antennae." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4021.
Full textIn many moth species, female adults release tiny amounts of sexual pheromone in order to attract male mates and reproduce. The quantity of released pheromone is around a few dozens of nanograms and male moths can detect it a few hundred meters away from females. As a consequence, they must be able to smell very low concentrations of pheromone. This olfactory function is carried out by the antennae. A critical step in the olfactory process is the capture of molecules from the air. This is a mass transport problem which depends heavily on the shape of the antenna. One of the most spectacular shapes, which occurs in several moth families, is the pectinate antenna. This type of antenna is also thought to be more effective at detecting pheromones than cylindrical-shaped ones. In this work, we investigated whether and how the shape of the pectinate antenna influences its efficiency at capturing pheromone molecules. We focused on one species, Samia cynthia.A pectinate antenna is a complex and multi-scale object. It has a length of 1cm and is composed of one main branch, the flagellum, which carries secondary branches, the rami. Each rami supports numerous hairs, the sensilla, which are 150µm long and have a diameter of only 3µm. Thus, the characteristic dimensions of the antenna span over four orders of magnitude, which makes the study of such objects difficult.To simplify our problem, we decided to split the pectinate antenna in two levels: the macrostructure, composed of the flagellum and the rami, and the microstructure, composed of a rami and the sensilla it bears. Both structures were scaled up and fabricated by Additive Manufacturing. The building of the rami and sensilla, which are long and thin cylinders, was a challenge as we reached the limits of the 3D-printers we used.Pectinate antenna are permeable objects, as are the macro-and microstructures. Thus, air flowing in the direction of such objects either passes through the antenna or is deflected around it. Leakiness if the proportion of flow passing through the permeable object. This parameter is important as it sets an upper limit on the pheromone captured by the antenna: molecules carried by the deflected part of the flow cannot be captured. We experimentally determined the leakiness of the macro- and microstructures at several air velocities encountered by a moth in nature using Particle Image Velocimetry.We then calculated the pheromone capture and efficiency of the microstructure by adapting a model of heat transfer to our mass transport problem. We showed that the longitudinal orientation of the sensilla is sufficient to explain the phenomenon of olfactory lens, stating that the tip of the sensilla captures more molecules than the base. We also found that the efficiency of the antenna is limited by both the leakiness of the antenna, which increases with air velocity, and the local capture, which is the proportion of molecules captured in the part of the airflow passing through the antenna and which decreases with air velocity. Eventually, the microstructure does not have a strong maximum efficiency at a specific air velocity but, instead, is moderately efficient over the large range of air velocity encountered by a moth.We developed a method with the help of FEM simulations to combine the two levels (the macrostructure and the microstructure). This method is based on the relation between drag and leakiness and allowed us to determine the leakiness of the entire antenna. We then could calculate the efficiency of the pectinate antenna and compared it with the one of a cylindrical-shaped one. We found that a pectinate design is a good solution to increase the surface contact between the air and the antenna strongly while maintaining a good capture efficiency at the velocities encountered by the moth
Ray, Cyril. "ATLAS, une plate-forme pour la modélisation et la simulation de systèmes désagrégés." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00090373.
Full textBoughanem, Hicham. "Evaluation des termes de transport et de dissipation de surface de flamme par simulation numérique directe de la combustion turbulente." Rouen, 1998. http://www.theses.fr/1998ROUES040.
Full textHagemann, Birger. "Numerical and Analytical Modeling of Gas Mixing and Bio-Reactive Transport during Underground Hydrogen Storage." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0328/document.
Full textIn the context of energy revolution large quantities of storage capacity are required for the integration of strongly fluctuating energy production from wind and solar power plants. The conversion of electrical energy into chemical energy in the form of hydrogen is one of the technical possibilities. The technology of underground hydrogen storage (UHS), where hydrogen is stored in subsurface formations similar to the storage of natural gas, is currently in the exploratory focus of several European countries. Compared to the storage of natural gas in subsurface formations, which is established since many years, hydrogen shown some significant differences in its hydrodynamic and bio-chemical behavior. These aspects were investigated in the present thesis by different analytical and numerical approaches
Delteil, Jacques. "Modélisation et exploitation de réseaux linéaires pour la simulation en temps réel." Toulouse 3, 1996. http://www.theses.fr/1996TOU30105.
Full textLe, Anh Ha. "A posteriori error estimation for simulation of diffusion and fluid mechanics problems by finite volume techniques." Paris 13, 2011. http://www.theses.fr/2011PA132055.
Full textChata, Florent. "Estimation par méthodes inverses des profils d’émission des machines à bois électroportatives." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0161/document.
Full textThis thesis is dedicated to the determination of unknown aerosol sources emission profiles from aerosol concentration measurements in the far-field. This procedure includes two distinct steps. The first step consists in determining the model linking the aerosol source and the concentration measurements using a known source of aerosols and the corresponding dust measurements. In a second step, the unknown source of aerosols is reconstructed by inverting the model for the measured aerosol concentrations. This manuscript deals in a first time with the stationary case. The exposed theoretical approach allows to suggest an optimal sensors placement in addition to the source estimation method. In a second time, we consider the case where the unknown aerosol source is unsteady. The estimation method is then based on a convolutive system approach, introducing the concept of source/sensor impedance. After a presentation of the numerical inversion technique, the method is applied experimentally to the real case of hand-held wood working machines so as to classify the machines with respect to their emission rate
Dijoux, Loïc. "Simulation numérique des phénomènes d'écoulement et de transport de masse en milieu poreux." Thesis, La Réunion, 2019. http://www.theses.fr/2019LARE0033.
Full textFlow and mass transport through porous media are an important part of underground water studies. Pollution spreading or salt water intrusion in coastal groundwater tables are well known applications. This thesis manuscript is dedicated to the study of this physical phenomena through numerical modelling. Different finite element methods are presented and discussed. We focus on the mathematical representation of strongheterogeneous and anisotropic porous media. We introduce two new numerical methods named H-RTm and H-RTp methods. They take advantage of the hybridization technique applied to mixed finite element methods and discontinuous Galerkin finite element methods. The benefits reached in the numerical representation of flow and mass transfer in porous media are illustrated through numerical examples currently used in literature