Academic literature on the topic 'Transporteur de glutamate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transporteur de glutamate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transporteur de glutamate"

1

Henderson, Fiona, Vincent Vialou, Salah El Mestikawy, and Veronique Fabre. "Régulation du sommeil par les neurones exprimant le transporteur vésiculaire du glutamate de type 3 (VGLUT3)." Médecine du Sommeil 13, no. 1 (2016): 48. http://dx.doi.org/10.1016/j.msom.2016.01.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Welbourne, T. C., and D. Chevalier. "Glutamate transport and not cellular content modulates paracellular permeability in LLC-PK1-F+ cells." American Journal of Physiology-Endocrinology and Metabolism 272, no. 3 (1997): E367—E370. http://dx.doi.org/10.1152/ajpendo.1997.272.3.e367.

Full text
Abstract:
Uptake of glutamate modulates two cellular processes: 1) glutamine flux through the cellular glutaminase (GA) and 2) paracellular permeability (PP). Because both responses are the result of a decreased glutamate uptake, the present study was designed to determine whether the transport step or resulting fall in cellular glutamate modulates PP. To do so, advantage was taken of the ability of D-glutamate to competitively displace the natural L-isomer yet maintain transporter activity at or even above that normally occurring with L-glutamate. As a consequence cellular L-glutamate would fall while
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Yun, Leonie F. Waanders, Silvia Holmseth, et al. "Proteome Analysis and Conditional Deletion of the EAAT2 Glutamate Transporter Provide Evidence against a Role of EAAT2 in Pancreatic Insulin Secretion in Mice." Journal of Biological Chemistry 289, no. 3 (2013): 1329–44. http://dx.doi.org/10.1074/jbc.m113.529065.

Full text
Abstract:
Islet function is incompletely understood in part because key steps in glutamate handling remain undetermined. The glutamate (excitatory amino acid) transporter 2 (EAAT2; Slc1a2) has been hypothesized to (a) provide islet cells with glutamate, (b) protect islet cells against high extracellular glutamate concentrations, (c) mediate glutamate release, or (d) control the pH inside insulin secretory granules. Here we floxed the EAAT2 gene to produce the first conditional EAAT2 knock-out mice. Crossing with Nestin-cyclization recombinase (Cre) eliminated EAAT2 from the brain, resulting in epilepsy
APA, Harvard, Vancouver, ISO, and other styles
4

BRÖER, Angelika, Carsten A. WAGNER, Florian LANG, and Stefan BRÖER. "The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine." Biochemical Journal 349, no. 3 (2000): 787–95. http://dx.doi.org/10.1042/bj3490787.

Full text
Abstract:
The cationic amino acid arginine, due to its positive charge, is usually accumulated in the cytosol. Nevertheless, arginine has to be released by a number of cell types, e.g. kidney cells, which supply other organs with this amino acid, or the endothelial cells of the blood–brain barrier which release arginine into the brain. Arginine release in mammalian cells can be mediated by two different transporters, y+LAT1 and y+LAT2. For insertion into the plasma membrane, these transporters have to be associated with the type-II membrane glycoprotein 4F2hc [Torrents, Estevez, Pineda, Fernandez, Llobe
APA, Harvard, Vancouver, ISO, and other styles
5

Henderson, Fiona, Salah El Mestikawy, and Véronique Fabre. "Régulation du sommeil et de l’anxiété par les neurones exprimant le transporteur vésiculaire du glutamate de type 3 (VGLUT3)." Médecine du Sommeil 14, no. 1 (2017): 57. http://dx.doi.org/10.1016/j.msom.2017.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Porcheray, Fabrice, Cathie Léone, Boubekeur Samah, Anne-Cécile Rimaniol, Nathalie Dereuddre-Bosquet, and Gabriel Gras. "Glutamate metabolism in HIV-infected macrophages: implications for the CNS." American Journal of Physiology-Cell Physiology 291, no. 4 (2006): C618—C626. http://dx.doi.org/10.1152/ajpcell.00021.2006.

Full text
Abstract:
Central nervous system disorders are still a common complication of human immunodeficiency virus (HIV) infection and can lead to dementia and death. They are mostly the consequences of an inflammatory macrophagic activation and relate to glutamate-mediated excitotoxicity. However, recent studies also suggest neuroprotective aspects of macrophage activation through the expression of glutamate transporters and glutamine synthetase. We thus aimed to study whether HIV infection or activation of macrophages could modulate glutamate metabolism in these cells. We assessed the effect of HIV infection
APA, Harvard, Vancouver, ISO, and other styles
7

Shim, Myoung Sup, Jin Young Kim, Kwang Hee Lee, et al. "l(2)01810 is a novel type of glutamate transporter that is responsible for megamitochondrial formation." Biochemical Journal 439, no. 2 (2011): 277–86. http://dx.doi.org/10.1042/bj20110582.

Full text
Abstract:
l(2)01810 causes glutamine-dependent megamitochondrial formation when it is overexpressed in Drosophila cells. In the present study, we elucidated the function of l(2)01810 during megamitochondrial formation. The overexpression of l(2)01810 and the inhibition of glutamine synthesis showed that l(2)01810 is involved in the accumulation of glutamate. l(2)01810 was predicted to contain transmembrane domains and was found to be localized to the plasma membrane. By using 14C-labelled glutamate, l(2)01810 was confirmed to uptake glutamate into Drosophila cells with high affinity (Km=69.4 μM). Also,
APA, Harvard, Vancouver, ISO, and other styles
8

Vandenberg, Robert J., Cheryl A. Handford, Ewan M. Campbell, Renae M. Ryan, and Andrea J. Yool. "Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1." Biochemical Journal 439, no. 2 (2011): 333–40. http://dx.doi.org/10.1042/bj20110905.

Full text
Abstract:
Glutamate transport is coupled to the co-transport of 3 Na+ and 1 H+ followed by the counter-transport of 1 K+. In addition, glutamate and Na+ binding to glutamate transporters generates an uncoupled anion conductance. The human glial glutamate transporter EAAT1 (excitatory amino acid transporter 1) also allows significant passive and active water transport, which suggests that water permeation through glutamate transporters may play an important role in glial cell homoeostasis. Urea also permeates EAAT1 and has been used to characterize the permeation properties of the transporter. We have pr
APA, Harvard, Vancouver, ISO, and other styles
9

Trip, Hein, Niels L. Mulder, and Juke S. Lolkema. "Cloning, Expression, and Functional Characterization of Secondary Amino Acid Transporters of Lactococcus lactis." Journal of Bacteriology 195, no. 2 (2012): 340–50. http://dx.doi.org/10.1128/jb.01948-12.

Full text
Abstract:
ABSTRACTFourteen genes encoding putative secondary amino acid transporters were identified in the genomes ofLactococcus lactissubsp.cremorisstrains MG1363 and SK11 andL. lactissubsp. lactisstrains IL1403 and KF147, 12 of which were common to all four strains. Amino acid uptake inL. lactiscells overexpressing the genes revealed transporters specific for histidine, lysine, arginine, agmatine, putrescine, aromatic amino acids, acidic amino acids, serine, and branched-chain amino acids. Substrate specificities were demonstrated by inhibition profiles determined in the presence of excesses of the o
APA, Harvard, Vancouver, ISO, and other styles
10

Yalçın, G. Dönmez, and M. Colak. "SIRT4 prevents excitotoxicity via modulating glutamate metabolism in glioma cells." Human & Experimental Toxicology 39, no. 7 (2020): 938–47. http://dx.doi.org/10.1177/0960327120907142.

Full text
Abstract:
Excitotoxicity is the presence of excessive glutamate, which is normally taken up by glutamate transporters on astrocytes. Glutamate transporter 1 (GLT-1) is the major transporter on glia cells clearing more than 90% of the glutamate. Sirtuin 4 (SIRT4) is a mitochondrial sirtuin which is expressed in the brain. Previously, it was shown that loss of SIRT4 leads to a more severe reaction to kainic acid, an excitotoxic agent, and also decreased GLT-1 expression in the brain. In this study, we aimed to investigate whether overexpression of SIRT4 is protective against excitotoxicity in glia cells.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Transporteur de glutamate"

1

Boulland, Jean-Luc. "Recycling the amino acid neurotransmitter glutamate in the CNS : l'alchimie du glutamate et de la glutamine." Paris 6, 2004. http://www.theses.fr/2004PA066017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Amilhon, Bénédicte. "Modulation intra-synaptique des neurotransmissions cholinergique et sérotoninergique par le glutamate via VGLUT3 (transporteur vésiculaire du glutamate de type 3)." Paris 6, 2009. http://www.theses.fr/2009PA066320.

Full text
Abstract:
Les transporteurs vésiculaires du glutamate ou VGLUTs permettent l’accumulation du glutamate dans les vésicules synaptiques. Trois VGLUTs différents ont été identifiés, VGLUT1, 2 et 3. VGLUT3 se révèle comme étant atypique puisqu’il est présent dans des sous-populations de neurones préalablement définis comme non-glutamatergiques. L’objectif principal de ma thèse a été de déterminer la fonction de VGLUT3 dans les interneurones cholinergiques du striatum, et les neurones sérotoninergiques des noyaux du raphé. Le support principal de ce travail est la caractérisation d’une lignée de souris mutan
APA, Harvard, Vancouver, ISO, and other styles
3

Chounlamountry, Keodavanh. "Les systèmes de capture du glutamate dans le noyau du tractus solitaire. Relations astrocytes-synapses et localisation subcellulaire des transporteurs du glutamate." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30035.

Full text
Abstract:
Le glutamate est le principal neurotransmetteur excitateur du noyau du tractus solitaire (NTS), une structure sensorielle qui reçoit des informations provenant des viscères. Nous avons utilisé l'immunocytochimie et la microscopie électronique pour étudier les systèmes de recapture du glutamate dans le NTS. Nous montrons que le transporteur exprimé par les astrocytes est de type GLT-1 et que la couverture des synapses glutamatergiques par les processus astrocytaires n'est pas complète ce qui autorise des phénomènes de transmission à distance par diffusion du glutamate. Nous montrons aussi que l
APA, Harvard, Vancouver, ISO, and other styles
4

Gras, Christelle. "Hétérogénéité des neurones glutamatergiques dans le système nerveux central." Paris 6, 2005. http://www.theses.fr/2005PA066510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moutsimilli, Larissa. "Implication de la neurotrasmission glutamatergique dans des modèles pharmacologiques et génétiques relatifs aux maladies psychiatriques." Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0021.

Full text
Abstract:
Au delà de son rôle métabolique essentiel, le glutamate est le neurotransmetteur excitateur majeur dans le système nerveux central des mammifères. C’est pourquoi la neurotransmission glutamatergique, peu étudiée à cause de l’absence d’outils spécifiques, est l’objet d’un intérêt croissant pour tenter d’élucider son implication dans la physiopathologie de troubles psychiatriques tels que la schizophrénie et la dépression principalement caractérisés par des déficits affectifs, cognitifs, exécutifs dans lesquels le glutamate serait impliqué. Récemment, la caractérisation moléculaire et fonctionne
APA, Harvard, Vancouver, ISO, and other styles
6

Henderson, Fiona. "Régulation du sommeil et de l’anxiété par VGLUT3, le transporteur vésiculaire du glutamate de type 3." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS136.

Full text
Abstract:
Des troubles du sommeil sont fréquemment associés à des maladies psychiatriques. Cependant, les mécanismes neuronaux qui sous-tendent les liens sommeil/émotions restent mal caractérisés. La démonstration récente que les neurones 5-HT, impliqués dans ces mécanismes, peuvent également libérer du glutamate grâce à la présence du transporteur vésiculaire du glutamate de type 3 (VGLUT3) permet de reconsidérer les processus neuronaux reliant états de vigilance et comportements émotionnels. Mon projet vise à définir le rôle de VGLUT3 dans la régulation de l’anxiété et du sommeil, cela en lien avec la
APA, Harvard, Vancouver, ISO, and other styles
7

Ramet, Lauriane. "Caractérisation d'une mutation humaine du transporteur vésiculaire du glutamate de type 3 (VGLUT3) : VGLUT3-p.A211V dans le système nerveux central de souris." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066700/document.

Full text
Abstract:
Le glutamate est accumulé dans des vésicules synaptiques par des transporteurs vésiculaires du glutamate appelés VGLUT1-3. VGLUT1 et VGLUT2 sont utilisés par les neurones glutamatergiques «classiques» corticaux et sous-corticaux. VGLUT3 est présent dans des sous-populations de neurones utilisant d’autres neurotransmetteurs que le glutamate. Dans la cochlée, VGLUT3 permet la transmission glutamatergique entre les cellules ciliées internes et les neurones du nerf auditif. Le travail mené par l’équipe du Pr Puel a permis de découvrir l’implication de VGLUT3 dans une pathologie héréditaire de l’au
APA, Harvard, Vancouver, ISO, and other styles
8

Chabbah, Nida. "Etude du rôle de VGLUT3, un transporteur vésiculaire du glutamate atypique, dans l'amygdale cérébrale dans le contexte de peur acquise." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066280/document.

Full text
Abstract:
Le trouble de stress post-traumatique (TSPT) est un trouble de type anxieux se déclenchant généralement suite à une expérience traumatisante. Des structures cérébrales telles que le cortex préfrontal, l’hippocampe ou encore l’amygdale, appartenant au réseau impliqué dans l’apprentissage et les mémoires émotionnelles, sont particulièrement altérées. Ce réseau étant extrêmement bien conservé au cours de l’évolution, la mise en place et le maintien des mémoires aversives peut être étudiés chez le rongeur par un paradigme pavlovien de peur conditionnée. Notre équipe a identifié une forte expressio
APA, Harvard, Vancouver, ISO, and other styles
9

Sakae, Diana Yae. "The Vesicular Glutamate Transporter type three in the nucleus accumbens and the regulation of reward and cocaine intake." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066096.

Full text
Abstract:
L'addiction est un comportement compulsif de recherche et de prise de drogues alternant des phases d'abstinence et de rechute malgré les conséquences négatives sur la vie de l'individu. Les êtres humains ne sont pas égaux devant l'addiction et les mécanismes moléculaires sous jacents sont encore mal compris. De nombreuses structures cérébrales, telles que l'aire tegmentale ventrale (VTA), le cortex préfrontal ou l'amygdale convergent sur le noyaux accumbens (NAc) pour réguler les circuits de la " récompense ". Les neurones GABAergiques épineux de taille moyenne (MSN) sont à la fois la voie d'e
APA, Harvard, Vancouver, ISO, and other styles
10

Miot, Stéphanie. "Rôle du transporteur vésiculaire du glutamate de type 3 (VGLUT3) dans la réponse au stress hypoxique néonatal et la surdité DFNA25." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066011/document.

Full text
Abstract:
Avant d'être libéré dans la fente synaptique, le glutamate est accumulé dans les vésicules présynaptiques par les transporteurs vésiculaires du glutamate (VGLUTs). Il existe 3 types de VGLUTs. VGLUT3 possède une distribution anatomique et des fonctions atypiques. Au sein du système nerveux central, VGLUT3 est exprimé dans des neurones glutamatergiques mais aussi non glutamatergiques, dans lesquels il assure les fonctions de co-transmission ou de synergie vésiculaire. On le retrouve notamment dans certains neurones sérotoninergiques du raphé. Au sein de l'oreille interne, VGLUT3 est l'unique VG
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Transporteur de glutamate"

1

(Editor), Jan Egebjerg, Arne Schousboe (Editor), and Povl Krogsgaard-Larsen (Editor), eds. Glutamate and GABA Receptors and Transporters: Structure, Function and Pharmacology (The Taylor & Francis Series in Pharmaceutical Sciences). CRC, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mason, Peggy. Synthesis, Packaging, and Termination of Neurotransmitters. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190237493.003.0012.

Full text
Abstract:
The synthesis, packaging, and termination of action of neurotransmitters are detailed. There are far more varieties of peptide neurotransmitters than there are of low-molecular-weight neurotransmitters. Yet low-molecular-weight neurotransmitters are the ubiquitous workhorses of the nervous system. Acetylcholine, the catecholamines norepinephrine and dopamine, serotonin, glutamate, and GABA are examined in some depth. The vesicular transporters that carry low-molecular-weight neurotransmitters from the cytoplasm into synaptic vesicles are covered. The role of monoamines in affect and mood and t
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Transporteur de glutamate"

1

Ryan, Renae, and Olga Boudker. "Glutamate Transporter Family." In Encyclopedia of Biophysics. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kobayashi, Keiko, and Takeyori Saheki. "Aspartate glutamate carrier (citrin) deficiency." In Membrane Transporter Diseases. Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9023-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kanner, Baruch I. "Sodium-Coupled GABA and Glutamate Transporters." In Neurotransmitter Transporters. Humana Press, 1997. http://dx.doi.org/10.1007/978-1-59259-470-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kanai, Yoshikatsu, Davide Trotti, Stephan Nussberger, and Matthias A. Hediger. "The High-Affinity Glutamate Transporter Family." In Neurotransmitter Transporters. Humana Press, 1997. http://dx.doi.org/10.1007/978-1-59259-470-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leke, Renata, and Arne Schousboe. "The Glutamine Transporters and Their Role in the Glutamate/GABA–Glutamine Cycle." In Advances in Neurobiology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45096-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manji, Husseini K., Jorge Quiroz, R. Andrew Chambers, et al. "Glutamate and EAA Transporters." In Encyclopedia of Psychopharmacology. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_1265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Danbolt, N. C., S. Holmseth, A. Skår, K. P. Lehre, and D. N. Furness. "Glutamate Uptake and Transporters." In Excitotoxicity in Neurological Diseases. Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-8959-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ganel, R., and J. D. Rothstein. "Glutamate Transporter Dysfunction and Neuronal Death." In Ionotropic Glutamate Receptors in the CNS. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-08022-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mergenthaler, Konstantin, Franziska Oschmann, and Klaus Obermeyer. "Glutamate Uptake by Astrocytic Transporters." In Springer Series in Computational Neuroscience. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00817-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vandenberg, Robert J., and Renae M. Ryan. "Allosteric Modulation of Glutamate Transporters." In Molecular Neuropharmacology. Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-672-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transporteur de glutamate"

1

Mohan, A., J. Gall, S. Nair, and P. Kalivas. "Glutamate Dynamics in the PFC-NAC Synapse." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15401.

Full text
Abstract:
A computational model of glutamate dynamics in the PFC-NAc syapse is developed. The mechanisms considered are release of glutamate into the synapse, diffusion of synaptic glutamate into the extracellular space, Glu added by cystine-glutamate exchanger, Glu removal via transporters, and binding to mGluR's. The model will be used to determine the relative impact of the different mechanisms on Glu homeostasis, by using information about Glu levels and ranges for the known parameters and kinetic constants. The model will then be integrated with a PFC cell firing model to investigate the effects of
APA, Harvard, Vancouver, ISO, and other styles
2

Rosati, M., A. Mazzanti, G. Gandini, and K. Matiasek. "Cystine/glutamate transporter SLC7A11 in canine tumour associated epilepsy, a new target for antiepileptic drugs?" In 62. Jahrestagung der Fachgruppe Pathologie der Deutschen Veterinärmedizinischen Gesellschaft. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1688630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krishnamachary, Balaji, Ishwarya Sivakumar, Yelena Mironchik, et al. "Abstract 2354: Downregulating the glutamine transporter, SLC1A5, significantly reduces cachexia in a PDAC xenograft." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-2354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nicholson, Kristen J., Taylor M. Gilliland, and Beth A. Winkelstein. "Duration of Nerve Root Compressive Trauma Modulates the Subsequent Thermal Hyperalgesia and Spinal Expression of the Glutamate Transporter, GLT1." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14110.

Full text
Abstract:
Mechanical compression of the cervical nerve roots is a common injury modality [1] and a frequent source of neck pain, affecting 30–50% of adults each year [2]. Since the nerve root is viscoelastic in compression (Fig. 1) [3,4], its response to loading from different injury scenarios is also likely a function of the duration of the applied tissue insult, which varies with the type of injury. For example, the nerve root undergoes brief periods of compression during sports and auto-related trauma, whereas a more prolonged compression occurs for a bulging disc or foraminal stenosis [1]. Similarly
APA, Harvard, Vancouver, ISO, and other styles
5

Kooshki, Mitra, Christine Naczki, Michael E. Robbins, and Linda J. Metheny-Barlow. "Abstract 1792: Radiation-induced downregulation of GLT-1 glutamate transporter mRNA expression is reversed by renin-angiotensin system inhibitors." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tan, Zheqiong, Caitlin M. Tressler, Kanchan Sonkar, and Kristine Glunde. "Abstract LB207: Glutamine transporter SLC38A3 promotes breast cancer migration via GSK3beta/beta-catenin/EMT pathway." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-lb207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mohan, Ashwin, Sandeep Pendyam, Bradley C. Enke, Peter Kalivas, and Satish S. Nair. "Stochastic Model of Glutamatergic PFC-NAc Synapse Predicts Cocaine-Induced Changes in Receptor Occupancy." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2615.

Full text
Abstract:
Neurotransmitter homeostasis in and around synapses involves random processes such as diffusion, molecular binding and unbinding. A three-dimensional stochastic diffusion model of a synapse was developed to provide molecular level details of neurotransmitter homeostasis not predicted by alternative models based on continuum approaches. This framework was used to estimate effective diffusion and provide a more accurate prediction of geometric tortuosity in the perisynaptic region. The stochastic model was used to predict the relative contributions of non-synaptic sources to extracellular concen
APA, Harvard, Vancouver, ISO, and other styles
8

Lawrence, Scott A., та Richard G. Moran. "Abstract 79: The compartmentalization of folate metabolism depends on two isoforms of folylpoly-γ-glutamate synthetase and the mitochondrial folate transporter". У Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Venkateswaran, Geetha, Shawn Chafe, Shannon Awrey, Oksana Nemirovsky, and Shoukat Dedhar. "Abstract 2015: Interplay of the pH regulator, carbonic anhydrase IX and the glutamine transporter, ASCT2 in hypoxic tumor microenvironment." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-2015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seo, Haengran. "Abstract 1719: CD133 attenuates ROS accumulation via a steady increase in the expression of the cystine/glutamate transporter xCT: Consequence on chemoresistance in hepatocellular carcinoma." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!