Journal articles on the topic 'Transverse aortic constriction (TAC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Transverse aortic constriction (TAC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
de Souza-Neto, Fernando Pedro, Mario de Morais e. Silva, Melissa de Carvalho Santuchi, et al. "Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice." Clinical Science 133, no. 5 (2019): 629–43. http://dx.doi.org/10.1042/cs20180547.
Full textShi, Zhan-Li, Kun Fang, Zhi-Hui Li, Dan-Hong Ren, Jia-Ying Zhang, and Jing Sun. "EZH2 Inhibition Ameliorates Transverse Aortic Constriction-Induced Pulmonary Arterial Hypertension in Mice." Canadian Respiratory Journal 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/9174926.
Full textLe, Sato, Kohsaka, et al. "Dec1 Deficiency Suppresses Cardiac Perivascular Fibrosis Induced by Transverse Aortic Constriction." International Journal of Molecular Sciences 20, no. 19 (2019): 4967. http://dx.doi.org/10.3390/ijms20194967.
Full textZhao, Mingming, Amy Chow, Jennifer Powers, Giovanni Fajardo, and Daniel Bernstein. "Microarray analysis of gene expression after transverse aortic constriction in mice." Physiological Genomics 19, no. 1 (2004): 93–105. http://dx.doi.org/10.1152/physiolgenomics.00040.2004.
Full textNakamura, Akihiro, D. Gregg Rokosh, Mariemma Paccanaro, et al. "LV systolic performance improves with development of hypertrophy after transverse aortic constriction in mice." American Journal of Physiology-Heart and Circulatory Physiology 281, no. 3 (2001): H1104—H1112. http://dx.doi.org/10.1152/ajpheart.2001.281.3.h1104.
Full textJung, Hanna, Eunjo Lee, Inkyeom Kim, and Gun Jik Kim. "Histone Deacetylase Inhibition Attenuates Aortic Remodeling in Rats under Pressure Overload." BioMed Research International 2020 (July 25, 2020): 1–8. http://dx.doi.org/10.1155/2020/4705615.
Full textTagashira, Hideaki, Shenuarin Bhuiyan, Norifumi Shioda, Hideyuki Hasegawa, Hiroshi Kanai та Kohji Fukunaga. "σ1-Receptor stimulation with fluvoxamine ameliorates transverse aortic constriction-induced myocardial hypertrophy and dysfunction in mice". American Journal of Physiology-Heart and Circulatory Physiology 299, № 5 (2010): H1535—H1545. http://dx.doi.org/10.1152/ajpheart.00198.2010.
Full textZhou, Qifeng, Scott Kesteven, Jianxin Wu, et al. "Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model." BioMed Research International 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/163564.
Full textJi, Xiao-Bing, Xiu-Rong Li, Hao-Ding, et al. "Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice." Cellular Physiology and Biochemistry 36, no. 5 (2015): 1688–98. http://dx.doi.org/10.1159/000430142.
Full textWang, Kai, Dasheng Lu, Bin Zhang, et al. "Renal Denervation Attenuates Multi-Organ Fibrosis and Improves Vascular Remodeling in Rats with Transverse Aortic Constriction Induced Cardiomyopathy." Cellular Physiology and Biochemistry 40, no. 3-4 (2016): 465–76. http://dx.doi.org/10.1159/000452561.
Full textHuang, Jiayuan, Jian Wu, Shijun Wang, et al. "Ultrasound biomicroscopy validation of a murine model of cardiac hypertrophic preconditioning: comparison with a hemodynamic assessment." American Journal of Physiology-Heart and Circulatory Physiology 313, no. 1 (2017): H138—H148. http://dx.doi.org/10.1152/ajpheart.00004.2017.
Full textTan, Wei Sheng, Thomas P. Mullins, Melanie Flint, et al. "Modeling heart failure risk in diabetes and kidney disease: limitations and potential applications of transverse aortic constriction in high-fat-fed mice." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 314, no. 6 (2018): R858—R869. http://dx.doi.org/10.1152/ajpregu.00357.2017.
Full textChen, Yun, Hui-Qin Luo, Lin-Lin Sun, et al. "Dihydromyricetin Attenuates Myocardial Hypertrophy Induced by Transverse Aortic Constriction via Oxidative Stress Inhibition and SIRT3 Pathway Enhancement." International Journal of Molecular Sciences 19, no. 9 (2018): 2592. http://dx.doi.org/10.3390/ijms19092592.
Full textHan, Xueting, Yanyan Wang, Mingqiang Fu, et al. "Effects of Adiponectin on Diastolic Function in Mice Underwent Transverse Aorta Constriction." Journal of Cardiovascular Translational Research 13, no. 2 (2019): 225–37. http://dx.doi.org/10.1007/s12265-019-09913-1.
Full textHsieh, Chung-Yu, Danny Wang, Hsing-Chun Chung, et al. "Remodeling of carotid arteries is associated with increased expression of thrombomodulin in a mouse transverse aortic constriction model." Thrombosis and Haemostasis 97, no. 04 (2007): 658–64. http://dx.doi.org/10.1160/th06-12-0690.
Full textChen, Yu, Yang Li, Lili Guo, et al. "Effects of Wenxin Keli on the Action Potential and L-Type Calcium Current in Rats with Transverse Aortic Constriction-Induced Heart Failure." Evidence-Based Complementary and Alternative Medicine 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/572078.
Full textGarcia-Menendez, Lorena, Georgios Karamanlidis, Stephen Kolwicz, and Rong Tian. "Substrain specific response to cardiac pressure overload in C57BL/6 mice." American Journal of Physiology-Heart and Circulatory Physiology 305, no. 3 (2013): H397—H402. http://dx.doi.org/10.1152/ajpheart.00088.2013.
Full textVinet, Laurent, Patricia Rouet-Benzineb, Xavier Marniquet, et al. "Chronic doxycycline exposure accelerates left ventricular hypertrophy and progression to heart failure in mice after thoracic aorta constriction." American Journal of Physiology-Heart and Circulatory Physiology 295, no. 1 (2008): H352—H360. http://dx.doi.org/10.1152/ajpheart.01101.2007.
Full textGarcía, Raquel, Ana B. Salido-Medina, Aritz Gil, et al. "Sex-Specific Regulation of miR-29b in the Myocardium Under Pressure Overload is Associated with Differential Molecular, Structural and Functional Remodeling Patterns in Mice and Patients with Aortic Stenosis." Cells 9, no. 4 (2020): 833. http://dx.doi.org/10.3390/cells9040833.
Full textPrévilon, Miresta, Mylène Pezet, Céline Dachez, Jean-Jacques Mercadier та Patricia Rouet-Benzineb. "Sequential alterations in Akt, GSK3β, and calcineurin signalling in the mouse left ventricle after thoracic aortic constriction". Canadian Journal of Physiology and Pharmacology 88, № 11 (2010): 1093–101. http://dx.doi.org/10.1139/y10-087.
Full textTakahashi, Ayako, Masanori Asakura, Shin Ito, et al. "Dipeptidyl-peptidase IV inhibition improves pathophysiology of heart failure and increases survival rate in pressure-overloaded mice." American Journal of Physiology-Heart and Circulatory Physiology 304, no. 10 (2013): H1361—H1369. http://dx.doi.org/10.1152/ajpheart.00454.2012.
Full textZhou, Junteng, Geer Tian, Yue Quan та ін. "Inhibition of P2X7 Purinergic Receptor Ameliorates Cardiac Fibrosis by Suppressing NLRP3/IL-1β Pathway". Oxidative Medicine and Cellular Longevity 2020 (22 травня 2020): 1–13. http://dx.doi.org/10.1155/2020/7956274.
Full textXing, Junhui, Pengcheng Li, Jin Hong, et al. "Overexpression of Ubiquitin-Specific Protease 2 (USP2) in the Heart Suppressed Pressure Overload-Induced Cardiac Remodeling." Mediators of Inflammation 2020 (September 7, 2020): 1–12. http://dx.doi.org/10.1155/2020/4121750.
Full textYoshioka, Kei, Hajime Otani, Takayuki Shimazu, Masanori Fujita, Toshiji Iwasaka, and Ichiro Shiojima. "Sepiapterin prevents left ventricular hypertrophy and dilatory remodeling induced by pressure overload in rats." American Journal of Physiology-Heart and Circulatory Physiology 309, no. 10 (2015): H1782—H1791. http://dx.doi.org/10.1152/ajpheart.00417.2015.
Full textHermans, Hadewich, Melissa Swinnen, Peter Pokreisz, et al. "Murine pressure overload models: a 30-MHz look brings a whole new “sound” into data interpretation." Journal of Applied Physiology 117, no. 5 (2014): 563–71. http://dx.doi.org/10.1152/japplphysiol.00363.2014.
Full textYou, Jieyun, Jian Wu, Junbo Ge, and Yunzeng Zou. "Comparison between adenosine and isoflurane for assessing the coronary flow reserve in mouse models of left ventricular pressure and volume overload." American Journal of Physiology-Heart and Circulatory Physiology 303, no. 10 (2012): H1199—H1207. http://dx.doi.org/10.1152/ajpheart.00612.2012.
Full textNakamura, Yuto, Shunbun Kita, Yoshimitsu Tanaka, et al. "A disintegrin and metalloproteinase 12 prevents heart failure by regulating cardiac hypertrophy and fibrosis." American Journal of Physiology-Heart and Circulatory Physiology 318, no. 2 (2020): H238—H251. http://dx.doi.org/10.1152/ajpheart.00496.2019.
Full textQi, Jianyong, Qin Liu, Kaizheng Gong, et al. "Apocynum Tablet Protects against Cardiac Hypertrophy via Inhibiting AKT and ERK1/2 Phosphorylation after Pressure Overload." Evidence-Based Complementary and Alternative Medicine 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/769515.
Full textLucas, Jason A., Yun Zhang, Peng Li та ін. "Inhibition of transforming growth factor-β signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart". American Journal of Physiology-Heart and Circulatory Physiology 298, № 2 (2010): H424—H432. http://dx.doi.org/10.1152/ajpheart.00529.2009.
Full textXu, Hong, Elza D. van Deel, Mark R. Johnson, et al. "Pregnancy mitigates cardiac pathology in a mouse model of left ventricular pressure overload." American Journal of Physiology-Heart and Circulatory Physiology 311, no. 3 (2016): H807—H814. http://dx.doi.org/10.1152/ajpheart.00056.2016.
Full textBuys, Emmanuel S., Michael J. Raher, Sarah L. Blake, et al. "Cardiomyocyte-restricted restoration of nitric oxide synthase 3 attenuates left ventricular remodeling after chronic pressure overload." American Journal of Physiology-Heart and Circulatory Physiology 293, no. 1 (2007): H620—H627. http://dx.doi.org/10.1152/ajpheart.01236.2006.
Full textFurukawa, Nozomi, Norimichi Koitabashi, Hiroki Matsui, et al. "DPP-4 inhibitor induces FGF21 expression via sirtuin 1 signaling and improves myocardial energy metabolism." Heart and Vessels 36, no. 1 (2020): 136–46. http://dx.doi.org/10.1007/s00380-020-01711-z.
Full textYu, Peng, Baoli Zhang, Ming Liu, et al. "Transcriptome Analysis of Hypertrophic Heart Tissues from Murine Transverse Aortic Constriction and Human Aortic Stenosis Reveals Key Genes and Transcription Factors Involved in Cardiac Remodeling Induced by Mechanical Stress." Disease Markers 2019 (October 27, 2019): 1–10. http://dx.doi.org/10.1155/2019/5058313.
Full textWeisheit, Christina Katharina, Jan Lukas Kleiner, Maria Belen Rodrigo, et al. "CX3CR1 is a prerequisite for the development of cardiac hypertrophy and left ventricular dysfunction in mice upon transverse aortic constriction." PLOS ONE 16, no. 1 (2021): e0243788. http://dx.doi.org/10.1371/journal.pone.0243788.
Full textChess, David J., Wenhong Xu, Ramzi Khairallah, et al. "The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet." American Journal of Physiology-Heart and Circulatory Physiology 295, no. 6 (2008): H2223—H2230. http://dx.doi.org/10.1152/ajpheart.00563.2008.
Full textNishimura, Koichi, Marko Oydanich, Jie Zhang, et al. "Rats are protected from the stress of chronic pressure overload compared with mice." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 318, no. 5 (2020): R894—R900. http://dx.doi.org/10.1152/ajpregu.00370.2019.
Full textIchinose, Fumito, Kenneth D. Bloch, Justina C. Wu, et al. "Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency." American Journal of Physiology-Heart and Circulatory Physiology 286, no. 3 (2004): H1070—H1075. http://dx.doi.org/10.1152/ajpheart.00940.2003.
Full textRaher, Michael J., Helene B. Thibault, Emmanuel S. Buys, et al. "A short duration of high-fat diet induces insulin resistance and predisposes to adverse left ventricular remodeling after pressure overload." American Journal of Physiology-Heart and Circulatory Physiology 295, no. 6 (2008): H2495—H2502. http://dx.doi.org/10.1152/ajpheart.00139.2008.
Full textZhang, Lei, Ying Yu, Peng Yu, et al. "HMGB1 Aggravates Pressure Overload-Induced Left Ventricular Dysfunction by Promoting Myocardial Fibrosis." International Journal of Hypertension 2020 (June 17, 2020): 1–8. http://dx.doi.org/10.1155/2020/7270351.
Full textYamagami, Kiyoshi, Toru Oka, Qi Wang, et al. "Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts." American Journal of Physiology-Heart and Circulatory Physiology 309, no. 3 (2015): H512—H522. http://dx.doi.org/10.1152/ajpheart.00137.2015.
Full textMohammed, Selma F., Jimmy Storlie, S. Jeson Sangaralingham, et al. "Murine Transverse Aortic Constriction (TAC) Is a Highly Variable Experimental Model Which Mimics Hypertensive Remodeling in Human Hypertension." Journal of Cardiac Failure 15, no. 6 (2009): S27. http://dx.doi.org/10.1016/j.cardfail.2009.06.398.
Full textLiu, Yaoqiu, Yahui Shen, Jingai Zhu, et al. "Cardiac-Specific PID1 Overexpression Enhances Pressure Overload-Induced Cardiac Hypertrophy in Mice." Cellular Physiology and Biochemistry 35, no. 5 (2015): 1975–85. http://dx.doi.org/10.1159/000374005.
Full textAvraham, Shimrit, Soraya Abu-Sharki, Rona Shofti, et al. "Early Cardiac Remodeling Promotes Tumor Growth and Metastasis." Circulation 142, no. 7 (2020): 670–83. http://dx.doi.org/10.1161/circulationaha.120.046471.
Full textHackert, Katarzyna, Susanne Homann, Shakila Mir, et al. "4-Methylumbelliferone Attenuates Macrophage Invasion and Myocardial Remodeling in Pressure-Overloaded Mouse Hearts." Hypertension 77, no. 6 (2021): 1918–27. http://dx.doi.org/10.1161/hypertensionaha.120.15247.
Full textGe, Qing, Li Zhao, Chen Liu, et al. "LCZ696, an Angiotensin Receptor-Neprilysin Inhibitor, Improves Cardiac Hypertrophy and Fibrosis and Cardiac Lymphatic Remodeling in Transverse Aortic Constriction Model Mice." BioMed Research International 2020 (January 11, 2020): 1–10. http://dx.doi.org/10.1155/2020/7256862.
Full textLi, Xiaoying, Lei Zhang, and Jiangjiu Liang. "Unraveling the Expression Profiles of Long Noncoding RNAs in Rat Cardiac Hypertrophy and Functions of lncRNA BC088254 in Cardiac Hypertrophy Induced by Transverse Aortic Constriction." Cardiology 134, no. 2 (2016): 84–98. http://dx.doi.org/10.1159/000443370.
Full textO'Shea, Karen M., David J. Chess, Ramzi J. Khairallah, et al. "Effects of adiponectin deficiency on structural and metabolic remodeling in mice subjected to pressure overload." American Journal of Physiology-Heart and Circulatory Physiology 298, no. 6 (2010): H1639—H1645. http://dx.doi.org/10.1152/ajpheart.00957.2009.
Full textNakagawa, Hitoshi, Takuya Kumazawa, Kenji Onoue, et al. "Local Action of Neprilysin Exacerbates Pressure Overload Induced Cardiac Remodeling." Hypertension 77, no. 6 (2021): 1931–39. http://dx.doi.org/10.1161/hypertensionaha.120.16445.
Full textBarrick, Cordelia J., Anping Dong, Rebekah Waikel, et al. "Parent-of-origin effects on cardiac response to pressure overload in mice." American Journal of Physiology-Heart and Circulatory Physiology 297, no. 3 (2009): H1003—H1009. http://dx.doi.org/10.1152/ajpheart.00896.2008.
Full textFliegner, Daniela, Carola Schubert, Adam Penkalla та ін. "Female sex and estrogen receptor-β attenuate cardiac remodeling and apoptosis in pressure overload". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 298, № 6 (2010): R1597—R1606. http://dx.doi.org/10.1152/ajpregu.00825.2009.
Full text