Academic literature on the topic 'Traveling-wave tubes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Traveling-wave tubes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Traveling-wave tubes"

1

Li, Ze Lun, Zhi Cheng Huang, and You Jun Huang. "Application of Multi-Beam Technique in Microwave Tubes." Applied Mechanics and Materials 155-156 (February 2012): 784–88. http://dx.doi.org/10.4028/www.scientific.net/amm.155-156.784.

Full text
Abstract:
The applications of multi-beam technique in microwave tubes including klystrons and traveling wave tubes have been analyzed. A type of 5-beam traveling wave tube slow-wave structure was designed, and dispersion characteristics and coupling impedance characteristics were simulated. According to the simulated results, it can be concluded that dispersion of multi-beam traveling wave tube is satisfactory and the coupling impedance is high, and multi-beam technique can be widely used in microwave tubes because it can improve the plus and output power of microwave tubes.
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Hai Wei, Lan Zhang, Jie Liu, and Xu Qian. "The Progress of Millimeter / Submillimeter Wave TWT Research." Applied Mechanics and Materials 705 (December 2014): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amm.705.219.

Full text
Abstract:
Millimeter / Submillimeter wave traveling wave tubes have the merits of high output power, frequency bandwidth, compact, light weight, etc. Millimeter / Submillimeter wave traveling wave tube is an ideal millimeter / submillimeter radiation source, can be used in fields of radar, electronic warfare, communication, etc. The paper introduced and summarized the research status of foreign Millimeter / submillimeter TWT wave tube, analyzed and discussed its trend.
APA, Harvard, Vancouver, ISO, and other styles
3

Goebel, D. M., J. G. Keller, W. L. Menninger, and S. T. Blunk. "Gain stability of traveling wave tubes." IEEE Transactions on Electron Devices 46, no. 11 (1999): 2235–44. http://dx.doi.org/10.1109/16.796301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Ying, Pan Pan, Bowen Song, Lin Zhang, and Jinjun Feng. "A 237 GHz Traveling Wave Tube for Cloud Radar." Electronics 12, no. 10 (May 9, 2023): 2153. http://dx.doi.org/10.3390/electronics12102153.

Full text
Abstract:
In this article, the first 237 GHz traveling wave tube (TWT) is presented as a high-power amplifier for the terahertz (THz) cloud radar. As is common with previous G-band traveling wave tubes developed at Beijing Vacuum Electronics Research Institute, the 237 GHz traveling wave tube employs a 20 kV, 50 mA pencil electron beam focused using periodic permanent magnets (PPMs) to achieve compactness. A folded waveguide (FWG) slow-wave structure (SWS) with modified circular bends is optimized to provide high impedance and eliminate sideband oscillations. Limited by insufficient drive power, this device is not saturated. The measured maximum output power and gain are 8.9 W and 35.7 dB, and the 3 dB gain bandwidth achieves 4 GHz.
APA, Harvard, Vancouver, ISO, and other styles
5

Freund, H. P., E. G. Zaidman, A. Mankofsky, N. R. Vanderplaats, and M. A. Kodis. "Nonlinear analysis of helix traveling wave tubes." Physics of Plasmas 2, no. 10 (October 1995): 3871–79. http://dx.doi.org/10.1063/1.871086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tighe, W., D. M. Goebel, and C. B. Thorington. "Transient ion disturbances in traveling wave tubes." IEEE Transactions on Electron Devices 48, no. 1 (2001): 82–87. http://dx.doi.org/10.1109/16.892172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nusinovich, G. S., J. Rodgers, W. Chen, and V. L. Granatstein. "Phase stability in gyro-traveling-wave-tubes." IEEE Transactions on Electron Devices 48, no. 7 (July 2001): 1460–68. http://dx.doi.org/10.1109/16.930667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Belyavsky, B. A., V. A. Borodin, and A. F. Nosovets. "High-power pulse millimeter traveling-wave tubes." Journal of Communications Technology and Electronics 59, no. 8 (August 2014): 812–15. http://dx.doi.org/10.1134/s1064226914080038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Il’ina, E. M., and I. P. Medvedkov. "Multifrequency operation modes in traveling wave tubes." Journal of Communications Technology and Electronics 62, no. 6 (June 2017): 598–604. http://dx.doi.org/10.1134/s1064226917050084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Figotin, Alexander. "Analytic theory of coupled-cavity traveling wave tubes." Journal of Mathematical Physics 64, no. 4 (April 1, 2023): 042705. http://dx.doi.org/10.1063/5.0102701.

Full text
Abstract:
Coupled-cavity traveling wave tube (CCTWT) is a high power microwave vacuum electronic device used to amplify radio frequency signals. CCTWTs have numerous applications, including radar, radio navigation, space communication, television, radio repeaters, and charged particle accelerators. Microwave-generating interactions in CCTWTs take place mostly in coupled resonant cavities positioned periodically along the electron beam axis. Operational features of a CCTWT, particularly the amplification mechanism, are similar to those of a multicavity klystron. We advance here a Lagrangian field theory of CCTWTs with the space being represented by one-dimensional continuum. The theory integrates into it the space-charge effects, including the so-called debunching (electron-to-electron repulsion). The corresponding Euler–Lagrange field equations are ordinary differential equations with coefficients varying periodically in the space. Utilizing the system periodicity, we develop instrumental features of the Floquet theory, including the monodromy matrix and its Floquet multipliers. We use them to derive closed form expressions for a number of physically significant quantities. Those include, in particular, dispersion relations and the frequency dependent gain foundational to the RF signal amplification. Serpentine (folded, corrugated) traveling wave tubes are very similar to CCTWTs, and our theory applies to them also.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Traveling-wave tubes"

1

Zuboraj, MD R. "Coupled Transmission Line Based Slow Wave Structures for Traveling Wave Tubes Applications." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1477947681829031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Birtel, Philip [Verfasser]. "Inclusion of Multi-Reflections in the Beam-Wave Interaction Simulation of Traveling Wave Tubes / Philip Birtel." München : Verlag Dr. Hut, 2011. http://d-nb.info/1013526538/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Safi, Djamschid [Verfasser]. "Simulation of traveling-wave tubes for analysis and optimization in modulated back-off / Djamschid Safi." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2020. http://d-nb.info/1217326774/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meyne, Sascha [Verfasser], and Arne F. [Akademischer Betreuer] Jacob. "Simulation and design of traveling-wave tubes with folded-waveguide delay lines / Sascha Meyne ; Betreuer: Arne F. Jacob." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2017. http://d-nb.info/112872667X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meyne, Sascha [Verfasser], and Arne [Akademischer Betreuer] Jacob. "Simulation and design of traveling-wave tubes with folded-waveguide delay lines / Sascha Meyne ; Betreuer: Arne F. Jacob." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2017. http://nbn-resolving.de/urn:nbn:de:gbv:830-88215541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Jongwoon Huang W. P. "Modeling, simulation and performance optimization of wideband semiconductor optical amplifiers." *McMaster only, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Theveny, Stéphane. "Approches fréquentielle et temporelle de la dynamique des tubes à onde progressive." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4741.

Full text
Abstract:
Le tube à onde progressive (TOP) est un dispositif où un faisceau d’électrons se déplaçant sur l’axe d’une hélice interagit avec les ondes électromagnétiques propagées par cette hélice. Il est le siège de nombreuses instabilités : des oscillations (génération d’ondes hyperfréquences parasites), mais aussi des instabilités du faisceau qui ont pour conséquence une dissipation parasite due à l'interception du faisceau par l'hélice. L’objectif de cette thèse est de développer une formulation hamiltonienne au problème permettant des modèles approchés plus compacts, plus précis et plus complets. Après l'avoir exposée, nous présentons un schéma numérique contenant notre modèle discret pour la simulation du TOP. Ce modèle discret a été mis au point pour tenir compte des conditions d'adaptation et de changements de géométrie. Le couplage avec les électrons met en jeu des champs de base simples, et le modèle tient compte de la charge d'espace. Différentes méthodes d'intégration numérique sont développées, dont nous comparons l'efficacité. Nous comparons ce modèle discret avec divers modèles d'amplification des ondes à froid, dont le modèle actuellement utilisé chez Thales pour la conception des tubes ({texttt{MVTRAD}}). Nous montrons aussi que les modèles d'amplification des ondes à froid à deux ou trois dimensions comme {texttt{MVTRAD}} ou {texttt{BWIS}} (prenant en compte les ondes inverses) ne respectent pas nécessairement l'équation de Maxwell-Faraday, contrairement au nôtre. Enfin, nous comparons notre modèle discret de circuit et le modèle d'amplification des ondes à froid dans le cas d'un faisceau linéaire
A traveling-wave tube (TWT) is a device where an electron beam traveling along the axis of a helix interacts with the electromagnetic waves propagated by this helix. It is sensitive to many instabilities : oscillators (generating noise microwave), but also beam instabilities that generate a noise dissipation due to the interception of the beam by the helix. The aim of this thesis is to find a Hamiltonian formulation of the problem to allow more compact, more accurate and more complete approximate models. Having found one, we start to develop a numerical scheme containing our discrete model for the simulation of TOP. This discrete model has been developed to take into account the tapering sections, geometry changes and adaptations. The coupling with electrons involves simple functions of space, and the model takes space charge into account. Different methods of numerical integration are developed, of which we compare the efficiency. We compared the discrete model with various cold waves amplification models, especially with the model currently used at Thales for the design of their tubes ({texttt{MVTRAD}}). Moreover, we showed that two- or three-dimensional cold wave amplification models like {texttt{MVTRAD}} or {texttt{BWIS}} (which takes into account the backward waves) fail to respect the Maxwell-Faraday equation, contrary to ours. Finally we made a comparison between our circuit discrete model and the amplification model of cold waves in the case of a linear beam
APA, Harvard, Vancouver, ISO, and other styles
8

Chbiki, Mounir. "Caractérisation thermomécanique des lignes de transmission et des collecteurs dans les tubes à ondes progressives." Thesis, Paris 10, 2014. http://www.theses.fr/2014PA100168/document.

Full text
Abstract:
Durant ces quarante dernières années, les Tubes à Ondes Progressives (TOP) n’ont cessé de se développer, orienté par la demande croissante des nouvelles applications (Internet Haut débit, TV HD…). Cette demande croissante en fréquence et en puissance se traduit par des problèmes d’échauffement thermique. En effet, l’augmentation de la puissance de sortie augmente la puissance dissipée. De plus, la montée en fréquence nécessite une diminution des dimensions, qui conduit tout logiquement à des densités de puissance plus importantes. Cette chaleur produite doit être évacuée par des petites surfaces de contact qui dépendent fortement du type d’assemblage. Cet échauffement thermique implique également des changements du comportement mécanique. Dans ce travail de thèse, le point principal a été l’étude du comportement des interfaces dans les tubes à ondes progressive. Il est question d’étudier les interfaces thermomécaniques produites lors de l'assemblage (frettage à chaud). L’objectif est de fournir un modèle de détermination de la température d’hélice en fonctionnement. Compte tenu des configurations de fonctionnement (Vide, haute tension, petite dimension…) une mesure directe n’est pas réalisable. Néanmoins plusieurs méthodes de mesure indirectes ont été investiguées afin de trouver la plus appropriée. Cette étude porte dans un premier temps sur les lignes de transmissions puis sur les collecteurs des TOPs. Nous avons réalisé un modèle analytique purement thermique permettant d’identifier rapidement l’impédance thermique des dispositifs. Une mesure de RTC et une coupe métallographique déterminant les surfaces de contact alimente ce modèle afin de lui donner une meilleure précision. Un modèle élément finis 2D nous permet d’identifier une pression moyenne de contact afin d’utiliser la RTC correspondante.L’impédance thermique, nous permet de trouver la température d’hélice en indiquant la puissance dissipée dans la ligne
During these last forty years traveling Waves tubes did not stop developing directed by the increasing request of the new applications (High-speed Internet, TV HD). This increasing request in frequency and in power is translated by thermal heating problems. Indeed, the more the output power will be high, the more there will be of the dissipated power, with smaller and smaller size. This leads logically to bigger and bigger power densities. This produced heat must be evacuated by small contact areas, which depend strongly on the type of assembly. This thermal heating also involves changes of the mechanical behaviour. The principal point will be the study of the behaviour of the interfaces in traveling waves tubes. Thesis work, we study the thermal and mechanical interfaces produced during a hot shrinking. Goal of this work is to supply a numerical or analytical model of helix temperature determination with functioning. Considering the configurations of functioning (Vacuum, high-voltage, small dimension) a direct measure is not impossible. Nevertheless several indirect measure methods were investigated to find the most appropriate. This study concerns at first the transmissions lines then the collectors of TOPS. We realized an analytical thermal model allowing to identify quickly the thermal impedance of devices. A thermal contact resistance measurement and a metallographic cutting determining the contact areas feeds this model to give it a better precision. A 2D finite element allows us to identify an average pressure of contact to use the corresponding RTC. The thermal resistance, allows us to find the helix temperature by indicating the power dissipated in the line
APA, Harvard, Vancouver, ISO, and other styles
9

Lopes, Daniel Teixeira. "Análise multi-sinal e caracterização experimental de válvulas de ondas progressivas (TWT) para aplicação em amplificadores de micro-ondas." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-03042012-093927/.

Full text
Abstract:
Este trabalho apresenta o desenvolvimento de uma plataforma para o estudo teórico e experimental de dispositivos amplificadores de micro-ondas do tipo válvula de ondas progressivas (TWT). A plataforma é composta por um modelo matemático e uma bancada de testes. O modelo matemático descreve a TWT como uma linha de transmissão acoplada a um feixe eletrônico unidimensional, onde as forças de carga espacial AC e DC são calculadas auto consistentemente, eliminando-se a necessidade de um cálculo separado para o fator de redução de carga espacial. O modelo matemático deu origem a dois códigos para a simulação da TWT. Ambos foram comparados com resultados experimentais e teóricos disponíveis na literatura especializada para uma pré-validação. O nível de concordância entre os presentes resultados e aqueles de referência foi acima de 90%, o que atendeu as expectativas de exatidão do modelo, tendo em vista que nem todos os parâmetros de entrada estavam disponíveis na referência. A bancada de testes construída é composta por uma TWT com banda de operação de 6,0 a 18 GHz e potência saturada máxima em torno de 55 dBm (316 W) em 13 GHz, um circuito de polarização para a mesma e a instrumentação necessária para a realização das medidas pertinentes aos amplificadores de potência. A TWT em questão foi caracterizada segundo seu comportamento mono-sinal e multi-sinal. As curvas de ganho e potência foram obtidas em função da frequência utilizando a voltagem de aceleração do feixe eletrônico e a potência de entrada como parâmetros. As curvas de transferência de potência, de fase e compressão de ganho foram obtidas para frequências escolhidas ao longo da banda, tendo novamente a voltagem de aceleração como parâmetro. Adicionalmente, a produção de produtos de intermodulação de terceira ordem foi caracterizada no ponto de 1 dB de compressão de ganho ao longo da banda analisada. Um teste de linearização por injeção de sinais, que estava previsto no plano de trabalho, não apresentou o desempenho esperado devido a problemas no funcionamento do circuito linearizador. Esses problemas foram analisados e listou-se uma série de passos para saná-los.
This work deals with the development of a platform for theoretical and experimental investigations of microwave amplifiers devices of the type traveling-wave tube (TWT). The platform consists of a mathematical model and a test bench. The mathematical model describes the TWT as a transmission line coupled to a onedimensional electron beam, in which the AC and DC space charge forces are calculated self-consistently, eliminating the need for a separate calculation for the space charge reduction factor. The mathematical model gave rise to two codes for the simulation of TWTs. Both codes were validated against experimental and theoretical results available in the literature. The overall level of agreement between the present results and those from the reference was above 90%, which was considered satisfactory since not all input parameters were available in the reference. The test bench consists of a wideband TWT operating from 6.0 to 18 GHz and maximum saturated power around 55 dBm (316 W) at 13 GHz, a biasing circuit, and the instrumentation needed to perform the relevant measurements to the power amplifier. The TWT in question was characterized according to its mono-signal and multi-signal behavior. The gain and power curves were obtained as a function of the frequency using the beam voltage and the input power as parameters. The curves of power transfer, phase transfer and gain compression were obtained for selected frequencies along the operating band, again, using the beam voltage as a parameter. Furthermore, the production of third-order intermodulation products was measured at the 1 dB gain compression point over the band analyzed. A linearization test applying the signal injection technique, which was part of the initial work plan, presented inadequate performance due to problems in the linearizer circuit operation. These problems were analyzed and a guide to solve them was provided.
APA, Harvard, Vancouver, ISO, and other styles
10

Menninger, Wiliam Libbey. "Relativistic harmonic gyration traveling-wave tube amplifier experiments." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36953.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.
Includes bibliographical references (p. 209-214).
by William Libbey Menninger.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Traveling-wave tubes"

1

Gilmour, A. S. Principles of traveling wave tubes. Boston: Artech House, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

United States. National Aeronautics and Space Administration., ed. Pulsed response of a traveling-wave tube. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ramins, Peter. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces. Cleveland, Ohio: Lewis Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramins, Peter. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ramins, Peter. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Palmer, Raymond W. Low-current traveling wave tube for use in the microwave power module. Cleveland, Ohio: Lewis Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

I, Tammaru, Vaszari J. P, and Lewis Research Center, eds. Development of a 75-watt 60-GHz traveling-wave tube for intersatellite communications. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ramins, Peter. Analytical and experimental performance of a dual-mode traveling-wave tube and multistage depressed collecter. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Office, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bartos, Karen F. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes. Cleveland, Ohio: Lewis Research Center, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

D, Wilson, and Lewis Research Center, eds. Development of a 39.5 GHz Karp traveling-wave tube for use in space: Final report. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Traveling-wave tubes"

1

Weik, Martin H. "traveling-wave tube." In Computer Science and Communications Dictionary, 1836. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Du, Chao-Hai, and Pu-Kun Liu. "Review of Gyrotron Traveling-Wave Tube Amplifiers." In Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers, 1–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54728-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Du, Chao-Hai, and Pu-Kun Liu. "Fundamental Theory of the Electron Cyclotron Maser." In Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers, 27–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54728-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Du, Chao-Hai, and Pu-Kun Liu. "Novel Propagation Characteristics of Lossy Dielectric-Loaded Waveguides." In Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers, 61–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54728-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Du, Chao-Hai, and Pu-Kun Liu. "Instability Competition in an Ultrahigh Gain Gyro-TWT Amplifier." In Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers, 91–120. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54728-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Du, Chao-Hai, and Pu-Kun Liu. "A Lossy Ceramic-Loaded Millimeter-Wave Gyro-TWT Amplifier." In Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers, 121–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54728-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Du, Chao-Hai, and Pu-Kun Liu. "Exploring New Mechanisms for High Power Millimeter-Wave Gyrotron Amplifiers." In Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers, 151–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54728-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Du, Chao-Hai, and Pu-Kun Liu. "Technologies Related to Gyrotron Amplifiers." In Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers, 175–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54728-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Shengpeng, Duo Xu, Ningjie Shi, and Yubin Gong. "Folded Waveguide Traveling Wave Tube." In Advances in Terahertz Source Technologies, 525–68. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003459675-22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fu, Chengfang. "Beam-Wave Interaction Simulation of Rectangular Helix Traveling Wave Tube." In Lecture Notes in Electrical Engineering, 159–66. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4790-9_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Traveling-wave tubes"

1

Joye, Colin D., Alan M. Cook, John C. Rodgers, Reginald L. Jaynes, Alexander N. Vlasov, Jeffrey P. Calame, David K. Abe, Alexander T. Burke, and John J. Petillo. "Microfabricated Millimeter-Wave Traveling Wave Tubes." In 2018 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2018. http://dx.doi.org/10.1109/icops35962.2018.9575595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rashidi, Arash, and Nader Behdad. "Metamaterial-enhanced traveling wave tubes." In 2014 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2014. http://dx.doi.org/10.1109/ivec.2014.6857559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Puri, P., and P. Lally. "Session 19 Electron tubes—Traveling wave tubes." In 1987 International Electron Devices Meeting. IRE, 1987. http://dx.doi.org/10.1109/iedm.1987.191459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carlsten, Bruce E. "Design of High-Power, MM-Wave Traveling-Wave Tubes." In HIGH ENERGY DENSITY AND HIGH POWER RF:5TH Workshop on High Energy Density and High Power RF. AIP, 2002. http://dx.doi.org/10.1063/1.1498189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

James, Bill G. "High-Power Millimeter-Wave Coupled-Cavity Traveling-Wave Tubes." In Technical Symposium Southeast, edited by James T. Coleman and James C. Wiltse. SPIE, 1987. http://dx.doi.org/10.1117/12.940796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jaynes, Reginald L., Alan M. Cook, Colin D. Joye, John C. Rodgers, Alexander N. Vlasov, Igor A. Chernyavskiy, Jeffrey P. Calame, et al. "Microfabrication and Micromachining for Millimeter-Wave Traveling Wave Tubes." In 2020 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2020. http://dx.doi.org/10.1109/icops37625.2020.9717736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Billa, Laxma Reddy, Muhammad Nadeem Akram, and Xuyuan Chen. "Novel rectangular slow-wave circuit for THz traveling wave tubes." In 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT). IEEE, 2015. http://dx.doi.org/10.1109/ucmmt.2015.7460637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bailey, Aimee G., Evgenya I. Smirnova, Lawrence M. Earley, Bruce E. Carlsten, and James L. Maxwell. "Photonic band gap structures for millimeter-wave traveling wave tubes." In Integrated Optoelectronic Devices 2006, edited by R. Jennifer Hwu and Kurt J. Linden. SPIE, 2006. http://dx.doi.org/10.1117/12.649396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Simakov, Evgenya I., Bruce E. Carlsten, Franklin Fierro, Frank L. Krawczyk, Kimberley Nichols, John A. Oertel, Derek W. Schmidt, and Dmitry Yu Shchegolkov. "Fabrication of ceramic structures for MM-wave traveling wave tubes." In 2016 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2016. http://dx.doi.org/10.1109/ivec.2016.7561842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zheng, Ruilin, and Xuyuan Chen. "Optimization of millimeter wave microfabricated folded waveguide traveling-wave tubes." In 2009 European Microwave Conference (EuMC). IEEE, 2009. http://dx.doi.org/10.23919/eumc.2009.5296348.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Traveling-wave tubes"

1

Reichard, Scott C. Biperiodicity in Coupled-Cavity Traveling-Wave Tubes. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada173141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brunasso, Theresa A. A Large-Signal Analysis Program for Helix Traveling-Wave Tubes. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada181111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kory, Carol L., John H. Booske, Susan C. Hagness, and Mark Converse. Computational Tools for Optimized Design of Advanced Traveling Wave Tubes. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada384754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Booske, John H., Dan van der Weide, Hongrui Jiang, Steve Limbach, Sean Sengele, Al Marshal, Ben Yang, Amy Marconnet, Mike He, and Sam Drezdzon. Microfabricated Traveling Wave Tubes for High Power Millimeter-Wave and THz-regime Sources. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada458532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cain, William N. The Effects of Dielectric and Metal Loading on the Dispersion Characteristics for Contrawound Helix Circuits Used in High Power Traveling-Wave Tubes. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada205345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Temkin, Richard, and Elizabeth Kowalski. Overmoded W-Band Traveling Wave Tube Amplifier. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada613841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morey, I. J., and C. K. Birdsall. Traveling-wave-tube simulation: The IBC (Interactive Beam-Circuit) code. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/6330238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Joye, Colin D., Alan M. Cook, Jeffrey P. Calame, David K. Abe, Alexander N. Vlasov, Igor A. Chernyavskiy, Khanh T. Nguyen, and Edward L. Wright. Microfabrication and Cold Testing of Copper Circuits for a 50 Watt, 220 GHz Traveling Wave Tube. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ad1004176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wein, Thomas. Patriot Stockpile Reliability Limited Life Components Test and Evaluation: Storage/Aging Test Plan for the Traveling Wave Tube (P/N 11448369). Revision B. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada254933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography