Academic literature on the topic 'Treadmilling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Treadmilling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Treadmilling"

1

Rodionov, V. I. "Microtubule Treadmilling in Vivo." Science 275, no. 5297 (January 10, 1997): 215–18. http://dx.doi.org/10.1126/science.275.5297.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

York, Ashley. "Treadmilling runs bacterial division." Nature Reviews Microbiology 15, no. 4 (April 2017): 193. http://dx.doi.org/10.1038/nrmicro.2017.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perez, Amilcar J., Yann Cesbron, Sidney L. Shaw, Jesus Bazan Villicana, Ho-Ching T. Tsui, Michael J. Boersma, Ziyun A. Ye, et al. "Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae." Proceedings of the National Academy of Sciences 116, no. 8 (February 4, 2019): 3211–20. http://dx.doi.org/10.1073/pnas.1816018116.

Full text
Abstract:
Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen, Streptococcus pneumoniae. Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZ mutant and another Streptococcus species. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells and ftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling in S. pneumoniae cells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate in S. pneumoniae.
APA, Harvard, Vancouver, ISO, and other styles
4

Forer, Arthur. "Does actin produce the force that moves a chromosome to the pole during anaphase?" Canadian Journal of Biochemistry and Cell Biology 63, no. 6 (June 1, 1985): 585–98. http://dx.doi.org/10.1139/o85-077.

Full text
Abstract:
Chromosomes move towards spindle poles because of force produced by chromosomal spindle fibres. I argue that actin is involved in producing this force. Actin is present in chromosomal spindle fibres, with consistent polarity. Physiological experiments using ultraviolet microbeam irradiations suggest that the force is due to an actin and myosin (or myosin-equivalent) system. Other physiological experiments (using inhibitors in "leaky" cells or antibodies injected into cells) that on the face of it would seem to rule out actin and myosin on closer scrutiny do not really do so at all. I argue that in vivo the "on" ends of chromosomal spindle fibre microtubules are at the kinetochores; I discuss the apparent contradiction between this conclusion and those from experiments on microtubules in vitro. From what we know of treadmilling in microtubules in vitro, the poleward movements of irradiation-induced areas of reduced birefringence (arb) can not be explained as treadmilling of microtubules: additional assumptions need to be made for arb movements toward the pole to be due to treadmilling. If arb movement does indeed represent treadmilling along chromosomal spindle fibre microtubules, treadmilling continues throughout anaphase. Thus I suggest that chromosomal spindle fibres shorten in anaphase not because polymerization is stopped at the kinetochore (the on end), as previously assumed, but rather because there is increased depolymerization at the pole (the "off" end).
APA, Harvard, Vancouver, ISO, and other styles
5

Arpağ, Göker, Elizabeth J. Lawrence, Veronica J. Farmer, Sarah L. Hall, and Marija Zanic. "Collective effects of XMAP215, EB1, CLASP2, and MCAK lead to robust microtubule treadmilling." Proceedings of the National Academy of Sciences 117, no. 23 (May 26, 2020): 12847–55. http://dx.doi.org/10.1073/pnas.2003191117.

Full text
Abstract:
Microtubule network remodeling is essential for fundamental cellular processes including cell division, differentiation, and motility. Microtubules are active biological polymers whose ends stochastically and independently switch between phases of growth and shrinkage. Microtubule treadmilling, in which the microtubule plus end grows while the minus end shrinks, is observed in cells; however, the underlying mechanisms are not known. Here, we use a combination of computational and in vitro reconstitution approaches to determine the conditions leading to robust microtubule treadmilling. We find that microtubules polymerized from tubulin alone can treadmill, albeit with opposite directionality and order-of-magnitude slower rates than observed in cells. We then employ computational simulations to predict that the combinatory effects of four microtubule-associated proteins (MAPs), namely EB1, XMAP215, CLASP2, and MCAK, can promote fast and sustained plus-end-leading treadmilling. Finally, we experimentally confirm the predictions of our computational model using a multi-MAP, in vitro microtubule dynamics assay to reconstitute robust plus-end-leading treadmilling, consistent with observations in cells. Our results demonstrate how microtubule dynamics can be modulated to achieve a dynamic balance between assembly and disassembly at opposite polymer ends, resulting in treadmilling over long periods of time. Overall, we show how the collective effects of multiple components give rise to complex microtubule behavior that may be used for global network remodeling in cells.
APA, Harvard, Vancouver, ISO, and other styles
6

MIHASHI, KOSHIN. "Treadmilling of actin and tubulin." Seibutsu Butsuri 25, no. 2 (1985): 75–83. http://dx.doi.org/10.2142/biophys.25.75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Naoz, Moshe, Uri Manor, Hirofumi Sakaguchi, Bechara Kachar, and Nir S. Gov. "Protein Localization by Actin Treadmilling and Molecular Motors Regulates Stereocilia Shape and Treadmilling Rate." Biophysical Journal 95, no. 12 (December 2008): 5706–18. http://dx.doi.org/10.1529/biophysj.108.143453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Waterman-Storer, Clare M., and E. D. Salmon. "Microtubule dynamics: Treadmilling comes around again." Current Biology 7, no. 6 (June 1997): R369—R372. http://dx.doi.org/10.1016/s0960-9822(06)00177-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peglion, Florent, Flora Llense, and Sandrine Etienne-Manneville. "Adherens junction treadmilling during collective migration." Nature Cell Biology 16, no. 7 (June 15, 2014): 639–51. http://dx.doi.org/10.1038/ncb2985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fulton, Alice B. "Treadmilling, diffusional exchange and cytoplasmic structures." Journal of Muscle Research and Cell Motility 6, no. 3 (June 1985): 263–73. http://dx.doi.org/10.1007/bf00713169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Treadmilling"

1

Beck, Henning [Verfasser], and Bernd [Akademischer Betreuer] Knöll. "Serum Response Factor and Actin Treadmilling Influence Neuronal Mitochondrial Dynamics / Henning Beck ; Betreuer: Bernd Knöll." Tübingen : Universitätsbibliothek Tübingen, 2012. http://d-nb.info/1155176022/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramirez, Diaz Diego Alejandro [Verfasser], and Petra [Akademischer Betreuer] Schwille. "The role of FtsZ treadmilling and torsional stress for bacterial cytokinesis: an in vitro study / Diego Alejandro Ramirez Diaz ; Betreuer: Petra Schwille." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1209878046/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dewimille, Philippe. "Un modèle simple de reptation cellulaire : le spermatozoïde des nétamones." Paris 6, 2006. http://www.theses.fr/2006PA066022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zumdieck, Alexander. "Dynamics of Active Filament Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1139849910030-68242.

Full text
Abstract:
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie "filament treadmilling", also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln
Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast
APA, Harvard, Vancouver, ISO, and other styles
5

Zumdieck, Alexander. "Dynamics of Active Filament Systems: The Role of Filament Polymerization and Depolymerization." Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A24642.

Full text
Abstract:
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie "filament treadmilling", also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln.
Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Treadmilling"

1

Kawamura, Ryuzo, Ken-Ichi Sano, and Yoshihito Osada. "Employing Cytoskeletal Treadmilling in Bio-actuators." In Soft Actuators, 711–22. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6850-9_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sano, Ken-Ichi, Ryuzo Kawamura, and Yoshihito Osada. "Employing Cytoskeletal Treadmilling in Bio-Actuator." In Soft Actuators, 489–97. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54767-9_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abeyaratne, Rohan, Eric Puntel, and Giuseppe Tomassetti. "Mechanics of Surface Growth: Stability of 1D and 2D Treadmilling Systems." In Lecture Notes in Mechanical Engineering, 1283–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41057-5_103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Obuse, Kiori, and Jean-Luc Thiffeault. "A Low-Reynolds-Number Treadmilling Swimmer Near a Semi-infinite Wall." In Natural Locomotion in Fluids and on Surfaces, 197–206. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3997-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lang, Alexander E., Sonja Kühn, and Hans Georg Mannherz. "Photorhabdus luminescens Toxins TccC3 and TccC5 Affect the Interaction of Actin with Actin-Binding Proteins Essential for Treadmilling." In Current Topics in Microbiology and Immunology, 53–67. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/82_2016_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Treadmilling." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 2025. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_17415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koskinen, Mikko, Enni Bertling, and Pirta Hotulainen. "Methods to Measure Actin Treadmilling Rate in Dendritic Spines." In Methods in Enzymology, 47–58. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-388448-0.00011-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography