Academic literature on the topic 'Treatment of creatine transporter deficiency'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Treatment of creatine transporter deficiency.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Treatment of creatine transporter deficiency"

1

Kurosawa, Yuko, Ton J. DeGrauw, Diana M. Lindquist, Victor M. Blanco, Gail J. Pyne-Geithman, Takiko Daikoku, James B. Chambers, Stephen C. Benoit, and Joseph F. Clark. "Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency." Journal of Clinical Investigation 122, no. 8 (August 1, 2012): 2837–46. http://dx.doi.org/10.1172/jci59373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bruun, Theodora U. J., Sarah Sidky, Anabela O. Bandeira, Francoise-Guillaume Debray, Can Ficicioglu, Jennifer Goldstein, Kairit Joost, et al. "Treatment outcome of creatine transporter deficiency: international retrospective cohort study." Metabolic Brain Disease 33, no. 3 (February 12, 2018): 875–84. http://dx.doi.org/10.1007/s11011-018-0197-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adriano, Enrico, Maurizio Gulino, Maria Arkel, Annalisa Salis, Gianluca Damonte, Nara Liessi, Enrico Millo, Patrizia Garbati, and Maurizio Balestrino. "Di-acetyl creatine ethyl ester, a new creatine derivative for the possible treatment of creatine transporter deficiency." Neuroscience Letters 665 (February 2018): 217–23. http://dx.doi.org/10.1016/j.neulet.2017.12.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baroncelli, Laura, Maria Grazia Alessandrì, Jonida Tola, Elena Putignano, Martina Migliore, Elena Amendola, Cornelius Gross, Vincenzo Leuzzi, Giovanni Cioni, and Tommaso Pizzorusso. "A novel mouse model of creatine transporter deficiency." F1000Research 3 (September 29, 2014): 228. http://dx.doi.org/10.12688/f1000research.5369.1.

Full text
Abstract:
Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and behavioral disturbances, language and speech impairment ( OMIM #300352).CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT−/y murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease.
APA, Harvard, Vancouver, ISO, and other styles
5

Baroncelli, Laura, Maria Grazia Alessandrì, Jonida Tola, Elena Putignano, Martina Migliore, Elena Amendola, Francesca Zonfrillo, et al. "A novel mouse model of creatine transporter deficiency." F1000Research 3 (January 22, 2015): 228. http://dx.doi.org/10.12688/f1000research.5369.2.

Full text
Abstract:
Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and behavioral disturbances, language and speech impairment ( OMIM #300352).CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT−/y murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease.
APA, Harvard, Vancouver, ISO, and other styles
6

Trotier-Faurion, Alexandra, Catherine Passirani, Jérôme Béjaud, Sophie Dézard, Vassili Valayannopoulos, Fréderic Taran, Pascale de Lonlay, Jean-Pierre Benoit, and Aloïse Mabondzo. "Dodecyl creatine ester and lipid nanocapsule: a double strategy for the treatment of creatine transporter deficiency." Nanomedicine 10, no. 2 (January 2015): 185–91. http://dx.doi.org/10.2217/nnm.13.205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schjelderup, Jack, Sigrun Hope, Christian Vatshelle, and Clara D. M. van Karnebeek. "Treatment experience in two adults with creatinfe transporter deficiency." Molecular Genetics and Metabolism Reports 27 (June 2021): 100731. http://dx.doi.org/10.1016/j.ymgmr.2021.100731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jaggumantri, Sravan, Mary Dunbar, Vanessa Edgar, Cristina Mignone, Theresa Newlove, Rajavel Elango, Jean Paul Collet, Michael Sargent, Sylvia Stockler-Ipsiroglu, and Clara D. M. van Karnebeek. "Treatment of Creatine Transporter (SLC6A8) Deficiency With Oral S-Adenosyl Methionine as Adjunct to L-arginine, Glycine, and Creatine Supplements." Pediatric Neurology 53, no. 4 (October 2015): 360–63. http://dx.doi.org/10.1016/j.pediatrneurol.2015.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Di Biase, Stefano, Xiaoya Ma, Xi Wang, Jiaji Yu, Yu-Chen Wang, Drake J. Smith, Yang Zhou, et al. "Creatine uptake regulates CD8 T cell antitumor immunity." Journal of Experimental Medicine 216, no. 12 (October 18, 2019): 2869–82. http://dx.doi.org/10.1084/jem.20182044.

Full text
Abstract:
T cells demand massive energy to combat cancer; however, the metabolic regulators controlling antitumor T cell immunity have just begun to be unveiled. When studying nutrient usage of tumor-infiltrating immune cells in mice, we detected a sharp increase of the expression of a CrT (Slc6a8) gene, which encodes a surface transporter controlling the uptake of creatine into a cell. Using CrT knockout mice, we showed that creatine uptake deficiency severely impaired antitumor T cell immunity. Supplementing creatine to WT mice significantly suppressed tumor growth in multiple mouse tumor models, and the combination of creatine supplementation with a PD-1/PD-L1 blockade treatment showed synergistic tumor suppression efficacy. We further demonstrated that creatine acts as a “molecular battery” conserving bioenergy to power T cell activities. Therefore, our results have identified creatine as an important metabolic regulator controlling antitumor T cell immunity, underscoring the potential of creatine supplementation to improve T cell–based cancer immunotherapies.
APA, Harvard, Vancouver, ISO, and other styles
10

Trotier-Faurion, Alexandra, Sophie Dézard, Frédéric Taran, Vassili Valayannopoulos, Pascale de Lonlay, and Aloïse Mabondzo. "Synthesis and Biological Evaluation of New Creatine Fatty Esters Revealed Dodecyl Creatine Ester as a Promising Drug Candidate for the Treatment of the Creatine Transporter Deficiency." Journal of Medicinal Chemistry 56, no. 12 (June 7, 2013): 5173–81. http://dx.doi.org/10.1021/jm400545n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Treatment of creatine transporter deficiency"

1

Udobi, Kenea C. "The Critical Period for Creatine Transporter Deficiency." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543838614741075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miles, Keila. "Determining the Effect of a Ketogenic Diet on Creatine Transporter Deficient Mice." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613745795667418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trotier-Faurion, Alexandra. "Optimisation pharmacologique des dérivés de la créatine pour le traitement du déficit en transporteur de la créatine." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00806976.

Full text
Abstract:
Le déficit en transporteur de la créatine est une maladie rare neurologique dans laquelle la perte de fonctionnalité du transporteur de la créatine (SLC6A8) conduit à une absence de créatine au niveau cérébral et à des retards de développement majeurs chez les enfants. A l'heure actuelle, aucune thérapie efficace n'est disponible.Une approche thérapeutique potentielle est le développement de molécules prodrogues de la créatine plus lipophiles qui franchiront les membranes cellulaires de façon passive et la recherche d'une formulation galénique susceptible d'emmener la prodrogue vers les cellules cibles d'intérêt, les neurones. Ainsi, dans cette thèse, nous proposons une nouvelle voie de synthèse originale d'esters de la créatine à longue chaîne aliphatique. Ces composés présentent des propriétés pharmacologiques intéressantes : nous montrons qu'il existe une relation de structure-activité entre la taille de la chaîne aliphatique (et donc la lipophilie) et la capacité de la molécule à être internalisée dans les cellules endothéliales cérébrales, astrocytaires et neuronales, constituant l'unité neurovasculaire. Il ressort de nos observations expérimentales que l'ester dodécylique de créatine est le meilleur candidat médicament. De plus, après avoir été internalisé dans les fibroblastes des patients présentant un déficit fonctionnel du transporteur de la créatine, l'ester dodécylique subit une conversion par les estérases cellulaires, libérant ainsi la créatine dans le compartiment intracellulaire.La formulation galénique permettant de protéger ces esters de créatine jusqu'au cerveau repose, elle, sur la nanovectorisation, par encapsulation de l'ester dodécylique de créatine dans des NanoCapsules Lipidiques. L'avantage de cette formulation est de permettre également un ciblage actif vers la Barrière Hémato-Encéphalique, obstacle majeur dans le développement de thérapies ciblant le Système Nerveux Central. Nos observations expérimentales mettent en exergue cette double stratégie thérapeutique pour le traitement du déficit en transporteur de la créatine.Ce travail a été soutenu financièrement par la Fondation Lejeune.
APA, Harvard, Vancouver, ISO, and other styles
4

"The glucose transporter type 1 deficiency syndrome: new insights into diagnosis, pathogenicity, and treatment." 2004. http://library.cuhk.edu.hk/record=b5892207.

Full text
Abstract:
Wong Hei Yi.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (leaves 157-175).
Abstracts in English and Chinese.
Acknowledgements --- p.i
Abstract --- p.ii
Abstract 摘要 --- p.iv
List of Figures --- p.vi
List of Tables --- p.ix
List of Abbreviations --- p.x
Table of Contents --- p.xiii
Chapter Chapter 1: --- Introduction --- p.1
Chapter 1.1 --- Importance of Glucose in Biological System --- p.1
Chapter 1.2 --- Glucose Transporter Families --- p.2
Chapter 1.2.1 --- Na+-Dependent Glucose Transporters --- p.2
Chapter 1.2.2 --- Facilitative Glucose Transporters --- p.3
Chapter 1.3 --- Glucose Transporter Type1 --- p.7
Chapter 1.3.1 --- Primary Structure --- p.7
Chapter 1.3.2 --- Secondary Structure --- p.8
Chapter 1.3.3 --- Membrane Topology --- p.8
Chapter 1.3.4 --- Tertiary Structure --- p.9
Chapter 1.3.5 --- Kinetics Properties --- p.11
Chapter 1.3.6 --- Affinity Reagents --- p.12
Chapter 1.3.7 --- Tissue Distribution --- p.13
Chapter 1.3.8 --- Multifunctional Property --- p.14
Chapter 1.3.9 --- Characterization of GLUT1 Gene --- p.14
Chapter 1.3.10 --- Regulation of GLUT1 Expression --- p.15
Chapter 1.4 --- Glucose Transporter Type 1 and the Brain --- p.17
Chapter 1.5 --- Glucose Transporter Type 1 Deficiency Syndrome --- p.20
Chapter 1.5.1 --- Background of GlutlDS --- p.20
Chapter 1.5.2 --- Clinical Features of GlutlDS --- p.23
Chapter 1.5.3 --- Genotype-Phenotype Correlations --- p.24
Chapter 1.5.4 --- Diagnosis --- p.26
Chapter 1.5.4.1 --- Erythrocyte Glucose Transporter Activity --- p.26
Chapter 1.5.4.2 --- Molecular Genetic Testing of GLUT1 Gene --- p.27
Chapter 1.5.4.3 --- Glucose Concentration --- p.27
Chapter 1.5.5 --- Management --- p.28
Chapter 1.5.5.1 --- Ketogenic Diet --- p.28
Chapter 1.5.5.2 --- Medication --- p.29
Chapter 1.5.5.2.1 --- Glutl Activator --- p.29
Chapter 1.5.5.2.2 --- Glutl Inhibitor --- p.29
Chapter 1.6 --- Hypothesis and Objectives --- p.31
Chapter Chapter 2: --- Identification of the First Two Asian GlutlDS Cases --- p.33
Chapter 2.1 --- Materials --- p.34
Chapter 2.1.1 --- Clinical History of Suspected GlutlDS Patients --- p.34
Chapter 2.1.2 --- Blood Samples --- p.35
Chapter 2.1.3 --- Reagents for Zero-trans Influx of 3-OMG Uptake in Erythrocytes --- p.35
Chapter 2.1.4 --- Reagents for Zero-trans Efflux of 3-OMG Uptake in Erythrocytes --- p.37
Chapter 2.1.5 --- Reagents for Glutl Gene Analysis --- p.37
Chapter 2.1.6 --- Reagents and Buffers for Reverse Transcription --- p.38
Chapter 2.1.7 --- Reagents and Buffers for Agarose Gel Electrophoresis --- p.39
Chapter 2.1.8 --- Reagents for Erythrocytes Membrane Preparation and Detection --- p.41
Chapter 2.2 --- Methods --- p.46
Chapter 2.2.1 --- Zero-trans Influx of 3-OMG Uptake in Erythrocytes --- p.46
Chapter 2.2.2 --- Zero-trans Efflux of 3-OMG out of Erythrocytes --- p.47
Chapter 2.2.3 --- Glutl Protein Expression --- p.48
Chapter 2.2.4 --- GLUT1 Gene Analyses --- p.51
Chapter 2.2.5 --- Statistics --- p.58
Chapter 2.3 --- Results --- p.59
Chapter 2.4 --- Discussions and Conclusions --- p.69
Chapter Chapter 3: --- Pathogenicity of GLUT1 Mutations --- p.78
Chapter 3.1 --- Materials --- p.79
Chapter 3.1.1 --- Construction of Glutl-Encoding Vectors --- p.79
Chapter 3.1.2 --- Cell Lines --- p.80
Chapter 3.1.3 --- "Cell Culture Media, Buffers and Other Reagents" --- p.81
Chapter 3.1.4 --- Cell Culture Wares --- p.83
Chapter 3.1.5 --- Reagents for Transfection --- p.83
Chapter 3.1.6 --- Reagents for Protein Determination and Western Blot Analysis --- p.83
Chapter 3.1.7 --- Reagents and Buffers for Flow Cytometry --- p.84
Chapter 3.1.8 --- Reagents for 2-DOG Uptake in CHO-K1 Cells --- p.84
Chapter 3.1.9 --- Reagents and Consumables for Confocal Microscopy --- p.85
Chapter 3.2 --- Methods --- p.86
Chapter 3.2.1 --- Cell Culture Methodology --- p.86
Chapter 3.2.2 --- Construction of Glutl-Encoding Vectors --- p.87
Chapter 3.2.3 --- Construction of Glutl Mutants --- p.91
Chapter 3.2.4 --- Establishment of Wild Type and Mutant Glutl Expressing Cell Lines --- p.92
Chapter 3.2.5 --- Glucose Influx Assays in CHO-K1 Cells --- p.96
Chapter 3.2.6 --- Confocal Microscopy Studies on Glutl Cellular Localization --- p.97
Chapter 3.2.7 --- Statistics --- p.98
Chapter 3.3 --- Results --- p.99
Chapter 3.4 --- Discussions and Conclusions --- p.112
Chapter Chapter 4: --- Effects of Anticonvulsive Compounds on Cellular Glucose Transport --- p.117
Chapter 4.1 --- Materials --- p.118
Chapter 4.1.1 --- Cell Lines --- p.118
Chapter 4.1.2 --- Cell Culture Media --- p.118
Chapter 4.1.3 --- Blood Sample --- p.119
Chapter 4.1.4 --- Anticonvulsive Compounds --- p.119
Chapter 4.1.5 --- Reagents for Zero-trans Influx of 3-OMG Uptake in Fibroblasts --- p.120
Chapter 4.1.6 --- Reagents for Zero-trans Influx of 2-DOG Uptake in Primary Astrocytes --- p.120
Chapter 4.1.7 --- Reagents for Total RNA Isolation --- p.121
Chapter 4.1.8 --- Reagents and Consumables for Real-Time PCR --- p.122
Chapter 4.2 --- Methods --- p.123
Chapter 4.2.1 --- Cell Culture --- p.123
Chapter 4.2.2 --- Drug Concentrations --- p.123
Chapter 4.2.3 --- Zero-trans Influx of 3-OMG Uptake in Erythrocytes --- p.123
Chapter 4.2.4 --- Zero-trans Influx of 3-OMG Uptake in Fibroblasts --- p.124
Chapter 4.2.5 --- Zero-trans Influx of 2-DOG Uptake in Primary Astrocytes --- p.125
Chapter 4.2.6 --- Gene Expression Study --- p.127
Chapter 4.2.7 --- Statistics --- p.130
Chapter 4.3 --- Results --- p.131
Chapter 4.4 --- Discussions and Conclusions --- p.148
Chapter Chapter 5: --- General Conclusions and Future Perspectives --- p.154
References --- p.157
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Treatment of creatine transporter deficiency"

1

Klepper, Joerg. Glut1 Deficiency and the Ketogenic Diets. Edited by Eric H. Kossoff. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0005.

Full text
Abstract:
Glucose is the essential fuel for the brain. Transport into brain is exclusively mediated by the facilitative glucose transporter Glut1. Glut1 deficiency results in a “brain energy crisis,” causing global developmental delay, epilepsy, and complex movement disorders including paroxysmal nonepileptic events. Early-onset absence epilepsy, paroxysmal exertion-induced dystonia, and stomatin-deficient cryohydrocytosis have been recognized as variants. Diagnosis is based on phenotype, isolated low CSF glucose, and mutations in the SLC2A1 gene. The condition is treated effectively by classical ketogenic diets providing ketones as an alternative fuel for the brain. The modified Atkins diet in adolescents and adults improves palatability and compliance at the expense of lower ketosis. Dietary treatment is continued into adolescence to meet the energy demand of the developing brain, raising concerns about long-term adverse effects. Current fields of research include novel compounds such as ketoesters and genetic approaches in Glut1-deficient mice as potential treatment options.
APA, Harvard, Vancouver, ISO, and other styles
2

Morris, Andrew A. M. Disorders of Ketogenesis and Ketolysis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0009.

Full text
Abstract:
Disorders of ketone body metabolism are characterized by episodes of metabolic decompensation. The initial episode usually occurs in the newborn period or early childhood during an infection with vomiting. The disorders of ketogenesis cause hypoglycemia and encephalopathy. Decompensation leads to severe ketoacidosis in defects of ketone body utilization (including MCT1 transporter deficiency). Treatment aims to prevent the catabolism that leads to decompensation. Prolonged fasting is avoided and glucose is provided, orally or intravenously, during illnesses. The risk of decompensation falls with age, particularly for disorders of ketolysis. There have, however, been some fatal episodes in adults with HMG-CoA lyase deficiency, including during pregnancy.
APA, Harvard, Vancouver, ISO, and other styles
3

Hsieh, David T., and Elizabeth A. Thiele. Ketogenic Diet for Other Epilepsies. Edited by Eric H. Kossoff. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0007.

Full text
Abstract:
The ketogenic diet is the treatment of choice for epilepsy in certain disorders of brain metabolism, in particular glucose transporter protein 1 deficiency and pyruvate dehydrogenase deficiency. The International Ketogenic Diet Study Group has listed several other conditions for which the ketogenic diet has been reported as being particularly beneficial and could be offered earlier. Whether efficacy in these conditions is due in part to the broad-spectrum efficacy of the ketogenic diet or to specific mechanisms specific to these conditions is still under investigation. This chapter discusses the use of dietary therapies for the treatment of epilepsy in certain genetic disorders, including Rett syndrome and tuberous sclerosis complex, as listed by the International Ketogenic Diet Study Group, and additionally discusses the use of epilepsy dietary therapies in patients with Angelman syndrome and Sturge-Weber syndrome.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Treatment of creatine transporter deficiency"

1

Villar, Cristina, Jaume Campistol, Carmen Fons, Judith Armstrong, Anna Mas, Aida Ormazabal, and Rafael Artuch. "Glycine and l-Arginine Treatment Causes Hyperhomocysteinemia in Cerebral Creatine Transporter Deficiency Patients." In JIMD Reports, 13–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/8904_2011_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peters, Nils, Martin Dichgans, Sankar Surendran, Josep M. Argilés, Francisco J. López-Soriano, Sílvia Busquets, Klaus Dittmann, et al. "Creatine Transporter Deficiency." In Encyclopedia of Molecular Mechanisms of Disease, 460–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

deGrauw, Ton J., Kim M. Cecil, Anna W. Byars, Gajja S. Salomons, William S. Ball, and Cornelis Jakobs. "The clinical syndrome of creatine transporter deficiency." In Guanidino Compounds in Biology and Medicine, 45–48. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0247-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peters, Nils, Martin Dichgans, Sankar Surendran, Josep M. Argilés, Francisco J. López-Soriano, Sílvia Busquets, Klaus Dittmann, et al. "Creatine Deficiency Syndrome due to X-linked Creatine Transporter Gene Defect." In Encyclopedia of Molecular Mechanisms of Disease, 460. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_8236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Torres, A., S. A. Newton, B. Crompton, A. Borzutzky, E. J. Neufeld, L. Notarangelo, and G. T. Berry. "CSF 5-Methyltetrahydrofolate Serial Monitoring to Guide Treatment of Congenital Folate Malabsorption Due to Proton-Coupled Folate Transporter (PCFT) Deficiency." In JIMD Reports, 91–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/8904_2015_445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stevenson, Roger E., Charles E. Schwartz, and R. Curtis Rogers. "Creatine Transporter Deficiency." In Atlas of X-Linked Intellectual Disability Syndromes, 78–79. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199811793.003.0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography