Academic literature on the topic 'Trees (Graph theory) Spanning trees (Graph theory)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Trees (Graph theory) Spanning trees (Graph theory).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Trees (Graph theory) Spanning trees (Graph theory)"
JOHANNSEN, DANIEL, MICHAEL KRIVELEVICH, and WOJCIECH SAMOTIJ. "Expanders Are Universal for the Class of All Spanning Trees." Combinatorics, Probability and Computing 22, no. 2 (January 3, 2013): 253–81. http://dx.doi.org/10.1017/s0963548312000533.
Full textJanson, Svante. "Random trees in a graph and trees in a random graph." Mathematical Proceedings of the Cambridge Philosophical Society 100, no. 2 (September 1986): 319–30. http://dx.doi.org/10.1017/s0305004100066111.
Full textDARMANN, ANDREAS. "POPULAR SPANNING TREES." International Journal of Foundations of Computer Science 24, no. 05 (August 2013): 655–77. http://dx.doi.org/10.1142/s0129054113500226.
Full textLi, Feng. "The Number of Spanning Trees in the Composition Graphs." Mathematical Problems in Engineering 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/613685.
Full textBoaventura-Netto, Paulo Oswaldo. "Ranking graph edges by the weight of their spanning arborescences or trees." Pesquisa Operacional 28, no. 1 (April 2008): 59–73. http://dx.doi.org/10.1590/s0101-74382008000100004.
Full textVasconcellos, Jucele França de Alencar, Edson Norberto Cáceres, Henrique Mongelli, Siang Wun Song, Frank Dehne, and Jayme Luiz Szwarcfiter. "New BSP/CGM algorithms for spanning trees." International Journal of High Performance Computing Applications 33, no. 3 (October 14, 2018): 444–61. http://dx.doi.org/10.1177/1094342018803672.
Full textLI, WENBO V., and XINYI ZHANG. "On the Difference of Expected Lengths of Minimum Spanning Trees." Combinatorics, Probability and Computing 18, no. 3 (May 2009): 423–34. http://dx.doi.org/10.1017/s0963548308009590.
Full textShang, Yilun. "On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs." Open Mathematics 14, no. 1 (January 1, 2016): 641–48. http://dx.doi.org/10.1515/math-2016-0055.
Full textKOMLÓS, JÁNOS, GÁBOR N. SÁRKÓZY, and ENDRE SZEMERÉDI. "Spanning Trees in Dense Graphs." Combinatorics, Probability and Computing 10, no. 5 (September 2001): 397–416. http://dx.doi.org/10.1017/s0963548301004849.
Full textGavril, Fǎnicǎ. "Generating the maximum spanning trees of a weighted graph." Journal of Algorithms 8, no. 4 (December 1987): 592–97. http://dx.doi.org/10.1016/0196-6774(87)90053-8.
Full textDissertations / Theses on the topic "Trees (Graph theory) Spanning trees (Graph theory)"
Montgomery, Richard Harford. "Minors and spanning trees in graphs." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709278.
Full textJayasooriya, Arachchilage Dinush Lanka Panditharathna. "Spanning Trees of Certain Types." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/2049.
Full textZhang, Xinyi. "Expected lengths of minimum spanning trees." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 139 p, 2008. http://proquest.umi.com/pqdweb?did=1597617641&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textMahoney, James Raymond. "Tree Graphs and Orthogonal Spanning Tree Decompositions." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/2944.
Full textKing, Andrew James Howell. "On decomposition of complete infinite graphs into spanning trees." Thesis, University of Reading, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253454.
Full textZhang, Yuanping. "Counting the number of spanning trees in some special graphs /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?COMP%202002%20ZHANG.
Full textAbdalla, Ayman Mahmoud. "Computing a diameter-constrained minimum spanning tree." Doctoral diss., University of Central Florida, 2001. http://digital.library.ucf.edu/cdm/ref/collection/RTD/id/5567.
Full textIn numerous practical applications, it is necessary to find the smallest possible tree with a bounded diameter. A diameter-constrained minimum spanning tree (DCMST) of a given undirected, edge-weighted graph, G, is the smallest-weight spanning tree of all spanning trees of G which contain no path with more than k edges, where k is a given positive integer. The problem of finding a DCMST is NP-complete for all values of k; 4 <= k <= (n - 2), except when all edge-weights are identical. A DCMST is essential for the efficiency of various distributed mutual exclusion algorithms, where it can minimize the number of messages communicated among processors per critical section. It is also useful in linear lightwave networks, where it can minimize interference in the network by limiting the traffic in the network lines. Another practical application requiring a DCMST arises in data compression, where some algorithms compress a file utilizing a data-structure, and decompress a path in the tree to access a record A DCMST helps such algorithm to be fast without sacrificing a lot of storage storage space .
Ph.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering and Computer Science
172 p.
Sehgal, Rahul. "Greedy routing in a graph by aid of its spanning tree experimental results and analysis /." [Kent, Ohio] : Kent State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1232166476.
Full textOcansey, Evans Doe. "Enumeration problems on lattices." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80393.
Full textENGLISH ABSTRACT: The main objective of our study is enumerating spanning trees (G) and perfect matchings PM(G) on graphs G and lattices L. We demonstrate two methods of enumerating spanning trees of any connected graph, namely the matrix-tree theorem and as a special value of the Tutte polynomial T(G; x; y). We present a general method for counting spanning trees on lattices in d 2 dimensions. In particular we apply this method on the following regular lattices with d = 2: rectangular, triangular, honeycomb, kagomé, diced, 9 3 lattice and its dual lattice to derive a explicit formulas for the number of spanning trees of these lattices of finite sizes. Regarding the problem of enumerating of perfect matchings, we prove Cayley’s theorem which relates the Pfaffian of a skew symmetric matrix to its determinant. Using this and defining the Pfaffian orientation on a planar graph, we derive explicit formula for the number of perfect matchings on the following planar lattices; rectangular, honeycomb and triangular. For each of these lattices, we also determine the bulk limit or thermodynamic limit, which is a natural measure of the rate of growth of the number of spanning trees (L) and the number of perfect matchings PM(L). An algorithm is implemented in the computer algebra system SAGE to count the number of spanning trees as well as the number of perfect matchings of the lattices studied.
AFRIKAANSE OPSOMMING: Die hoofdoel van ons studie is die aftelling van spanbome (G) en volkome afparings PM(G) in grafieke G en roosters L. Ons beskou twee metodes om spanbome in ’n samehangende grafiek af te tel, naamlik deur middel van die matriks-boom-stelling, en as ’n spesiale waarde van die Tutte polinoom T(G; x; y). Ons behandel ’n algemene metode om spanbome in roosters in d 2 dimensies af te tel. In die besonder pas ons hierdie metode toe op die volgende reguliere roosters met d = 2: reghoekig, driehoekig, heuningkoek, kagomé, blokkies, 9 3 rooster en sy duale rooster. Ons bepaal eksplisiete formules vir die aantal spanbome in hierdie roosters van eindige grootte. Wat die aftelling van volkome afparings aanbetref, gee ons ’n bewys van Cayley se stelling wat die Pfaffiaan van ’n skeefsimmetriese matriks met sy determinant verbind. Met behulp van hierdie stelling en Pfaffiaanse oriënterings van planare grafieke bepaal ons eksplisiete formules vir die aantal volkome afparings in die volgende planare roosters: reghoekig, driehoekig, heuningkoek. Vir elk van hierdie roosters word ook die “grootmaat limiet” (of termodinamiese limiet) bepaal, wat ’n natuurlike maat vir die groeitempo van die aantaal spanbome (L) en die aantal volkome afparings PM(L) voorstel. ’n Algoritme is in die rekenaaralgebra-stelsel SAGE geimplementeer om die aantal spanboome asook die aantal volkome afparings in die toepaslike roosters af te tel.
Zhang, Daili. "Multi-agent based control of large-scale complex systems employing distributed dynamic inference engine." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33963.
Full textBooks on the topic "Trees (Graph theory) Spanning trees (Graph theory)"
Leister, Karen J. Using minimal spanning trees to compare the reliability of network topologies. Hampton, Va: Langley Research Center, 1990.
Find full textIndian Institute of Management, Ahemdabad., ed. A probabilistic tabu search algorithm for the generalized minimum spanning tree problem. Ahmedabad: Indian Institute of Management, 2003.
Find full textLeister, Karen J. Using minimal spanning trees to compare the reliabilty of network topologies. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textIndian Institute of Management, Ahmedabad., ed. Solving medium to large sized euclidean generalized minimum spanning tree problems. Ahmedabad: Indian Institute of Management, 2003.
Find full textKasʹi͡anov, V. N. Graph theory for programmers: Algorithms for processing trees. Dordrecht: Kluwer Academic, 2000.
Find full textA, Evstigneev V., ed. Graph theory for programmers: Algorithms for processing trees. Dordrecht: Kluwer Academic, 2000.
Find full textCrouch, Peter. Trees, bialgebras and intrinsic numerical algorithms. Chicago, IL: Dept. of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 1990.
Find full textRubin, Matatyahu. The reconstruction of trees from their automorphism groups. Providence, R.I: American Mathematical Society, 1993.
Find full textBook chapters on the topic "Trees (Graph theory) Spanning trees (Graph theory)"
Kasyanov, Victor N., and Viadimir A. Evstigneev. "Spanning Trees." In Graph Theory for Programmers, 121–73. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4122-2_3.
Full textHartsfield, N., and J. S. Werth. "Spanning Trees of the Complete Bipartite Graph." In Topics in Combinatorics and Graph Theory, 339–46. Heidelberg: Physica-Verlag HD, 1990. http://dx.doi.org/10.1007/978-3-642-46908-4_38.
Full textLeaños, J., C. Merino, G. Salazar, and J. Urrutia. "Spanning Trees of Multicoloured Point Sets with Few Intersections." In Combinatorial Geometry and Graph Theory, 113–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30540-8_13.
Full textKeller, Chaya, Micha A. Perles, Eduardo Rivera-Campo, and Virginia Urrutia-Galicia. "Blockers for Noncrossing Spanning Trees in Complete Geometric Graphs." In Thirty Essays on Geometric Graph Theory, 383–97. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0110-0_20.
Full textHamacher, Horst W., and Kathrin Klamroth. "Introduction to Graph Theory and Shortest Spanning Trees." In Lineare und Netzwerk-Optimierung / Linear and Network-Optimization, 105–16. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-91579-5_5.
Full textClemens, Dennis, Asaf Ferber, Roman Glebov, Dan Hefetz, and Anita Liebenau. "Building spanning trees quickly in Maker-Breaker games." In The Seventh European Conference on Combinatorics, Graph Theory and Applications, 365–70. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-475-5_58.
Full textHuemer, Clemens, and Anna de Mier. "An improved lower bound on the maximum number of non-crossing spanning trees." In The Seventh European Conference on Combinatorics, Graph Theory and Applications, 283–90. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-475-5_46.
Full textSaoub, Karin R. "Trees." In Graph Theory, 123–68. Boca Raton: CRC Press, 2021. | Series: Textbooks in mathematics: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781138361416-3.
Full textSumner, David. "Forbidden Trees." In Graph Theory, 69–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97686-0_8.
Full textGimadi, Edward Kh, Aleksandr S. Shevyakov, and Alexandr A. Shtepa. "On Asymptotically Optimal Approach for the Problem of Finding Several Edge-Disjoint Spanning Trees of Given Diameter in an Undirected Graph with Random Edge Weights." In Mathematical Optimization Theory and Operations Research, 67–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77876-7_5.
Full textConference papers on the topic "Trees (Graph theory) Spanning trees (Graph theory)"
Onete, Cristian E., and A. Maria Cristina C. Onete. "Finding spanning trees and Hamiltonian circuits in an un-oriented graph an algebraic approach." In 2011 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2011. http://dx.doi.org/10.1109/ecctd.2011.6043384.
Full textZhou, Hong, and Kwun-Lon Ting. "Spanning Tree Based Topological Optimization of Compliant Mechanisms." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84608.
Full textDreher, D., and J. L. Walker. "Connections between computation trees and graph covers." In 2009 Information Theory and Applications Workshop (ITA). IEEE, 2009. http://dx.doi.org/10.1109/ita.2009.5044971.
Full textDadalto, Arthur Pratti, Fábio Luiz Usberti, and Mário César San Felice. "On the Approximability of the Minimum Subgraph Diameter Problem." In III Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2018.3169.
Full textZou, Hong-Liu, Karim Abdel-Malek, and Jia-Yi Wang. "Numerical Formulations for Computing Design Propagations of the Spatial Slider-Crank Mechanism." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1198.
Full textLi, Bohan, Xindi Zhang, Shaowei Cai, Jinkun Lin, Yiyuan Wang, and Christian Blum. "NuCDS: An Efficient Local Search Algorithm for Minimum Connected Dominating Set." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/209.
Full textYan, Hong-Sen, Feng-Ming Ou, and Ming-Feng Tang. "An Algorithm for the Enumeration of Serial and/or Parallel Combinations of Kinematic Building Blocks." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57295.
Full text