Academic literature on the topic 'Triangulating manifolds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Triangulating manifolds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Triangulating manifolds"

1

Ayala, R., A. Quintero, and W. J. R. Mitchell. "Triangulating and recognising PL homology manifolds." Mathematical Proceedings of the Cambridge Philosophical Society 104, no. 3 (1988): 497–504. http://dx.doi.org/10.1017/s0305004100065683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sakai, Katsuro. "Simplicial complexes triangulating infinite-dimensional manifolds." Topology and its Applications 29, no. 2 (1988): 167–83. http://dx.doi.org/10.1016/0166-8641(88)90073-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cooper, D., and W. P. Thurston. "Triangulating 3-manifolds using 5 vertex link types." Topology 27, no. 1 (1988): 23–25. http://dx.doi.org/10.1016/0040-9383(88)90004-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bell, Mark, Joel Hass, Joachim Hyam Rubinstein, and Stephan Tillmann. "Computing trisections of 4-manifolds." Proceedings of the National Academy of Sciences 115, no. 43 (2018): 10901–7. http://dx.doi.org/10.1073/pnas.1717173115.

Full text
Abstract:
We describe an algorithm to compute trisections of orientable four-manifolds using arbitrary triangulations as input. This results in explicit complexity bounds for the trisection genus of a 4-manifold in terms of the number of pentachora (4-simplices) in a triangulation.
APA, Harvard, Vancouver, ISO, and other styles
5

Gaifullin, Alexander Aleksandrovich. "634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of manifolds like the octonionic projective plane." Izvestiya: Mathematics 88, no. 3 (2024): 419–67. http://dx.doi.org/10.4213/im9489e.

Full text
Abstract:
In 1987 Brehm and Kühnel showed that any combinatorial $d$-manifold with less than $3d/2+3$ vertices is PL homeomorphic to the sphere and any combinatorial $d$-manifold with exactly $3d/2+3$ vertices is PL homeomorphic to either the sphere or a manifold like a projective plane in the sense of Eells and Kuiper. The latter possibility may occur for $d\in\{2,4,8,16\}$ only. There exist a unique $6$-vertex triangulation of $\mathbb{RP}^2$, a unique $9$-vertex triangulation of $\mathbb{CP}^2$, and at least three $15$-vertex triangulations of $\mathbb{HP}^2$. However, until now, the question of whe
APA, Harvard, Vancouver, ISO, and other styles
6

Gaifullin, Alexander Aleksandrovich. "634 vertex-transitive and more than $10^{103}$ non-vertex-transitive 27-vertex triangulations of manifolds like the octonionic projective plane." Известия Российской академии наук. Серия математическая 88, no. 3 (2024): 12–60. http://dx.doi.org/10.4213/im9489.

Full text
Abstract:
In 1987 Brehm and Kühnel showed that any combinatorial $d$-manifold with less than $3d/2+3$ vertices is PL homeomorphic to the sphere and any combinatorial $d$-manifold with exactly $3d/2+3$ vertices is PL homeomorphic to either the sphere or a manifold like a projective plane in the sense of Eells and Kuiper. The latter possibility may occur for $d\in\{2,4,8,16\}$ only. There exist a unique $6$-vertex triangulation of $\mathbb{RP}^2$, a unique $9$-vertex triangulation of $\mathbb{CP}^2$, and at least three $15$-vertex triangulations of $\mathbb{HP}^2$. However, until now, the question of whe
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Ensil. "Normal surfaces in non-compact 3-manifolds." Journal of the Australian Mathematical Society 78, no. 3 (2005): 305–21. http://dx.doi.org/10.1017/s1446788700008557.

Full text
Abstract:
AbstractWe extend the normal surface Q-theory to non-compact 3-manifolds with respect to ideal triangulations. An ideal triangulation of a 3-manifold often has a small number of tetrahedra resulting in a system of Q-matching equations with a small number of variables. A unique feature of our approach is that a compact surface F with boundary properly embedded in a non-compact 3-manifold M with an ideal triangulation with torus cusps can be represented by a normal surface in M as follows. A half-open annulus made up of an infinite number of triangular disks is attached to each boundary componen
APA, Harvard, Vancouver, ISO, and other styles
8

Casali, Maria Rita. "The Average Edge Order of 3-Manifold Coloured Triangulations." Canadian Mathematical Bulletin 37, no. 2 (1994): 154–61. http://dx.doi.org/10.4153/cmb-1994-022-x.

Full text
Abstract:
AbstractIf K is a triangulation of a closed 3-manifold M with E0(K) edges and F0(K) triangles, then the average edge order of K is defined to beIn [8], the relations between this quantity and the topology of M are investigated, especially in the case of μ0(K) being small (where the study relies on Oda's classification of triangulations of 𝕊2 up to eight vertices—see [9]). In the present paper, the attention is fixed upon the average edge order of coloured triangulations; surprisingly enough, the obtained results are perfectly analogous to Luo-Stong' ones, and may be proved with little effort b
APA, Harvard, Vancouver, ISO, and other styles
9

Knudson, Kevin P. "Approximate Triangulations of Grassmann Manifolds." Algorithms 13, no. 7 (2020): 172. http://dx.doi.org/10.3390/a13070172.

Full text
Abstract:
We define the notion of an approximate triangulation for a manifold M embedded in Euclidean space. The basic idea is to build a nested family of simplicial complexes whose vertices lie in M and use persistent homology to find a complex in the family whose homology agrees with that of M. Our key examples are various Grassmann manifolds G k ( R n ) .
APA, Harvard, Vancouver, ISO, and other styles
10

BURTON, BENJAMIN A. "STRUCTURES OF SMALL CLOSED NON-ORIENTABLE 3-MANIFOLD TRIANGULATIONS." Journal of Knot Theory and Its Ramifications 16, no. 05 (2007): 545–74. http://dx.doi.org/10.1142/s0218216507005439.

Full text
Abstract:
A census is presented of all closed non-orientable 3-manifold triangulations formed from at most seven tetrahedra satisfying the additional constraints of minimality and ℙ2-irreducibility. The eight different 3-manifolds represented by these 41 different triangulations are identified and described in detail, with particular attention paid to the recurring combinatorial structures that are shared amongst the different triangulations. Using these recurring structures, the resulting triangulations are generalised to infinite families that allow similar triangulations of additional 3-manifolds to
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Triangulating manifolds"

1

Distexhe, Julie. "Triangulating symplectic manifolds." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/287522/3/toc.pdf.

Full text
Abstract:
Le but de cette thèse est d'étudier les structures symplectiques dans la catégorie des variétés linéaires par morceaux (PL). La question centrale est de déterminer si toute variété symplectique lisse $(M,omega)$ peut être triangulée de manière symplectique, au sens où il existe une variété linéaire par morceaux $K$ et une triangulation $h :K -> M$ telle que $h^*omega$ est une forme symplectique constante par morceaux. Nous étudions d'abord un problème plus simple, qui consiste à trianguler les formes volumes lisses. Étant donnée une variété lisse $M$ munie d'une forme volume $Omega$, nous mont
APA, Harvard, Vancouver, ISO, and other styles
2

Woodruff, Benjamin M. "Statistical Properties of Thompson's Group and Random Pseudo Manifolds." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd854.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mijatović, Aleksandar. "Triangulations of three-manifolds." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barchechat, Alexandre. "Minimal triangulations of 3-manifolds /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gill, Montek Singh. "Representations of the Fundamental Groups of Triangulated 3-Manifolds." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/14683.

Full text
Abstract:
In this thesis we study representations of the fundamental groups of triangulated 3-manifolds. Previous work of Rubinstein-Tillmann has chosen how to construct a class of such representations into the symmetric groups when the triangulation is even. In another context, building on the work of Thurston and many others on geometric structures and associated holonomy representations, work of Luo has shown how to construct a class of such representations into projective linear groups when the triangulation admits a solution to the hyperbolic gluing equations over some commutative ring with identit
APA, Harvard, Vancouver, ISO, and other styles
6

Melzer, Sebastian [Verfasser], Ulrich [Gutachter] Brehm, and Frank H. [Gutachter] Lutz. "k-irreducible triangulations of 2-manifolds / Sebastian Melzer ; Gutachter: Ulrich Brehm, Frank H. Lutz." Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1226942466/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krüger, Benedikt [Verfasser], Klaus [Gutachter] Mecke, and Frank H. [Gutachter] Lutz. "Simulating Triangulations: Graphs, Manifolds and (Quantum) Spacetime / Benedikt Krüger ; Gutachter: Klaus Mecke, Frank H. Lutz." Erlangen : FAU University Press, 2016. http://d-nb.info/1118850017/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krüger, Benedikt [Verfasser], Klaus R. [Gutachter] Mecke, and Frank H. [Gutachter] Lutz. "Simulating Triangulations: Graphs, Manifolds and (Quantum) Spacetime / Benedikt Krüger ; Gutachter: Klaus Mecke, Frank H. Lutz." Erlangen : FAU University Press, 2016. http://nbn-resolving.de/urn:nbn:de:bvb:29-opus4-77370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yazdan, Pour Ali Akbar. "Résolutions et Régularité de Castelnuovo-Mumford." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENM083/document.

Full text
Abstract:
Le sujet de cette thèse est l'étude d'idéaux monomiaux de l'anneau de polynômes S qui ont une résolution linéaire. D'après un résultat remarquable de Bayer et Stilman et en utilisant la polarisation, la classification des idéaux monomiaux ayant une résolution linéaire est équivalente à la classification des idéaux monomiaux libres de carrés ayant une résolution linéaire. Pour cette raison dans cette thèse nous considérons seulement le cas d'idéaux monomiaux libres de carrés. De plus, le théorème de Eagon-Reiner établit une dualité entre les idéaux monomiaux libres de carrés ayant une résolutio
APA, Harvard, Vancouver, ISO, and other styles
10

Petrauskas, Ignas. "Netiesinių daugdarų atpažinimo metodų taikymo web-kamera gautiems vaizdų rinkiniams analizuoti tyrimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2012~D_20140704_173536-90409.

Full text
Abstract:
Šiame darbe nagrinėjami netiesiniai daugdarų atpažinimo metodai ir daugiamačių duomenų projekcijos metodai. Siūloma jais spręsti keliais laisvės laipsniais besisukančio objekto orientacijos radimo problemą. Aprašomi MDS, Trianguliacijos, Sammon, RPM, mRPM, CCA, PCA, LLE, LE, HLLE, LTSA, SMACOF ir Isomap metodai. Su kai kuriais iš jų atliekami web-kamera gautų galvos atvaizdų tyrimai. Isomap algoritmo pagrindu sukuriama programinė įranga ir su ja taipogi atliekami galvos orientacijos tyrimai.<br>This paper deals with Analysis of non-linear manifold learning methods and multidimensional data pro
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Triangulating manifolds"

1

Korppi, Tuomas. Equivariant triangulations of differentiable and real-analytic manifolds with a properly discontinuous action. Suomalainen Tiedeakatemia, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolfgang, Kühnel. Tight polyhedral submanifolds and tight triangulations. Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jaco, William H., Hyam Rubinstein, Craig David Hodgson, Martin Scharlemann, and Stephan Tillmann. Geometry and topology down under: A conference in honour of Hyam Rubinstein, July 11-22, 2011, The University of Melbourne, Parkville, Australia. American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Annalisa, Marzuoli, and SpringerLink (Online service), eds. Quantum Triangulations: Moduli Spaces, Strings, and Quantum Computing. Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Topology and geometry in dimension three: Triangulations, invariants, and geometric structures : conference in honor of William Jaco's 70th birthday, June 4-6, 2010, Oklahoma State University, Stillwater, OK. American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Introduction to 3-maniflods. AMS, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hyperbolic Knot Theory. American Mathematical Society, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lin, Francesco. Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture. American Mathematical Society, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kirby, Robion C., and Laurence C. Siebenmann. Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. (AM-88), Volume 88. Princeton University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Newstok, Scott. Making ‘Music at the Editing Table’. Edited by James C. Bulman. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199687169.013.2.

Full text
Abstract:
Orson Welles was as multifaceted as Shakespeare in drawing his material from manifold sources across multiple media. His 1952 film Othello strategically echoes Verdi and Boito’s 1887 opera Otello, and thereby vindicates his adaptation’s liberties by triangulating and transmediating his sources. Invoking Verdi also permitted Welles to contrast his own Shakespeare films with those of Laurence Olivier, whom Welles dismissed as merely a transcriber of stage versions. In contrast, Welles described his own editing practice as being more akin to musical composition. Attending to Welles’s recurrent an
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Triangulating manifolds"

1

Kühnel, Wolfgang. "(k−1)-connected 2k-manifolds." In Tight Polyhedral Submanifolds and Tight Triangulations. Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0096345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schipper, Haijo. "Generating triangulations of 2-manifolds." In Computational Geometry-Methods, Algorithms and Applications. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54891-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Sang-hyun. "Acute Geodesic Triangulations of Manifolds." In In the Tradition of Thurston II. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97560-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kühnel, Wolfgang. "3-manifolds and twisted sphere bundles." In Tight Polyhedral Submanifolds and Tight Triangulations. Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0096346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kühnel, Wolfgang. "Connected sums and manifolds with boundary." In Tight Polyhedral Submanifolds and Tight Triangulations. Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0096347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sakai, Katsuro. "Triangulation of Hilbert Cube Manifolds and Related Topics." In Springer Monographs in Mathematics. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7575-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kalik, K., R. Quatember, and W. L. Wendland. "Interpolation, Triangulation and Numerical Integration on Closed Manifolds." In Boundary Element Topics. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60791-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Viro, O. "Moves of triangulations of a PL-manifold." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0101204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fedoseev, Denis A., Vassily O. Manturov, and Igor M. Nikonov. "Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups $$\Gamma _{n}^{k}$$." In Lecture Notes in Computational Science and Engineering. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76798-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Quinn, Frank. "The Triangulation of Manifolds: Topology, Gauge Theory, and History." In Arbeitstagung Bonn 2013. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43648-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Triangulating manifolds"

1

Kang, Ensil, and J. Hyam Rubinstein. "Ideal triangulations of 3–manifolds I: spun normal surface theory." In Conference on the Topology of Manifolds of Dimensions 3 and 4. Mathematical Sciences Publishers, 2004. http://dx.doi.org/10.2140/gtm.2004.7.235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eppstein, David, and M. Gopi. "Single-strip triangulation of manifolds with arbitrary topology." In the twentieth annual symposium. ACM Press, 2004. http://dx.doi.org/10.1145/997817.997888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leibon, Greg, and David Letscher. "Delaunay triangulations and Voronoi diagrams for Riemannian manifolds." In the sixteenth annual symposium. ACM Press, 2000. http://dx.doi.org/10.1145/336154.336221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

CHEN, Menglin, and Yue CHEN. "CLUSTER-BASED TRIANGULATION FOR CLOSED MANIFOLD SURFACE." In 11th Joint International Computer Conference - JICC 2005. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701534_0186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burton, Benjamin A. "A new approach to crushing 3-manifold triangulations." In the 29th annual symposium. ACM Press, 2013. http://dx.doi.org/10.1145/2462356.2462409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Caroli, Manuel, and Monique Teillaud. "Delaunay triangulations of point sets in closed euclidean d-manifolds." In the 27th annual ACM symposium. ACM Press, 2011. http://dx.doi.org/10.1145/1998196.1998236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Romanoni, Andrea, Amael Delaunoy, Marc Pollefeys, and Matteo Matteucci. "Automatic 3D reconstruction of manifold meshes via delaunay triangulation and mesh sweeping." In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2016. http://dx.doi.org/10.1109/wacv.2016.7477650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burton, Benjamin A. "Detecting genus in vertex links for the fast enumeration of 3-manifold triangulations." In the 36th international symposium. ACM Press, 2011. http://dx.doi.org/10.1145/1993886.1993901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dann, Andrew G., Steve J. Thorpe, Leo V. Lewis, and Peter Ireland. "Innovative Measurement Techniques for a Cooled Turbine Casing Operating at Engine Representative Thermal Conditions." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26092.

Full text
Abstract:
To optimize the efficiency of modern aero-gas turbine engines the turbine tip clearances must be tightly controlled so as to minimize leakage losses. In addition, the clearance control system must be able to respond with sufficient rapidity to engine thermal transients. One method of achieving turbine tip-clearance control is to manipulate the turbine casing temperature, and thereby radial growth, by convective cooling. The consequent clearance control system represents a particularly complex thermo-mechanical design problem. The current experimental study aims to simulate the heat loads to wh
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!