Academic literature on the topic 'Triazole and tetrazole'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Triazole and tetrazole.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Triazole and tetrazole"

1

Suresh, Lingala, P. Sagar Vijay Kumar, T. Vinodkumar, and G. V. P. Chandramouli. "Heterogeneous recyclable nano-CeO2 catalyst: efficient and eco-friendly synthesis of novel fused triazolo and tetrazolo pyrimidine derivatives in aqueous medium." RSC Advances 6, no. 73 (2016): 68788–97. http://dx.doi.org/10.1039/c6ra16307f.

Full text
Abstract:
A ceria nanocatalyst was used for the one-pot, multicomponent condensation reaction of benzoylacetonitrile, aromatic aldehydes and 5-amino-triazole/tetrazole proceeding via C–C and C–N bond formation to deliver triazolo/tetrazolo[1,5-a]pyrimidines.
APA, Harvard, Vancouver, ISO, and other styles
2

Chandrasekhar, Attoor, Venkatachalam Ramkumar, and Sethuraman Sankararaman. "Palladium catalyzed carbonylative annulation of the C(sp2)–H bond of N,1-diaryl-1H-tetrazol-5-amines and N,4-diaryl-4H-triazol-3-amines to quinazolinones." Organic & Biomolecular Chemistry 16, no. 44 (2018): 8629–38. http://dx.doi.org/10.1039/c8ob02516a.

Full text
Abstract:
Pd(ii) catalyzed direct C–H carbonylative annulation of N,1-diaryl-1H-tetrazol-5-amines and N,4-diaryl-4H-1,2,4-triazol-3-amines gave the corresponding triazole and tetrazole fused quinazolinones in good yields.
APA, Harvard, Vancouver, ISO, and other styles
3

Lysenko, Andrey B. "The heterobifunctional ligand 5-[4-(1,2,4-triazol-4-yl)phenyl]-1H-tetrazole and its role in the construction of a CdIImetal–organic chain structure." Acta Crystallographica Section C Crystal Structure Communications 68, no. 10 (2012): m291—m294. http://dx.doi.org/10.1107/s0108270112038498.

Full text
Abstract:
5-[4-(1,2,4-Triazol-4-yl)phenyl]-1H-tetrazole, C9H7N7, (I), an asymmetric heterobifunctional organic ligand containing triazole (tr) and tetrazole (tz) termini linked directly through a 1,4-phenylene spacer, crystallizes in the polar space groupPc. The heterocyclic functions, serving as single hydrogen-bond donor (tz) or acceptor (tr) units, afford hydrogen-bonded zigzag chains with no crystallographic centre of inversion. In the structure ofcatena-poly[[diaquacadmium(II)]bis{μ2-5-[4-(1,2,4-triazol-4-yl)phenyl]tetrazol-1-ido-κ2N1:N1′}], [Cd(C9H6N7)2(H2O)2]n, (II), the CdIIdication resides on a
APA, Harvard, Vancouver, ISO, and other styles
4

Pavlov, Dmitry, Taisiya Sukhikh, Evgeny Filatov, and Andrei Potapov. "Facile Synthesis of 3-(Azol-1-yl)-1-adamantanecarboxylic Acids—New Bifunctional Angle-Shaped Building Blocks for Coordination Polymers." Molecules 24, no. 15 (2019): 2717. http://dx.doi.org/10.3390/molecules24152717.

Full text
Abstract:
For the first time, orthogonally substituted azole-carboxylate adamantane ligands were synthesized and used for preparation of coordination polymers. The angle-shaped ligands were prepared by the reaction of 1-adamantanecarboxylic acid and azoles (1H-1,2,4-triazole, 3-methyl-1H-1,2,4-triazole, 3,5-dimethyl-1H-1,2,4-triazole, 1H-tetrazole, 5-methyl-1H-tetrazole) in concentrated sulfuric acid. Variation of the solvent and substituents in azole rings allowed to prepare both 1D and 2D copper(II) and nickel(II) coordination polymers, [Cu2(trzadc)4(H2O)0.7]∙DMF∙0.3H2O, [Cu(trzadc)2(MeOH)]∙MeOH, [Ni(
APA, Harvard, Vancouver, ISO, and other styles
5

Ciesielski, Witold, and Anna Krenc. "Potentiometric Titration of Triazolethiols and Tetrazolethiols with Iodine in Alkaline Medium." Collection of Czechoslovak Chemical Communications 67, no. 8 (2002): 1193–99. http://dx.doi.org/10.1135/cccc20021193.

Full text
Abstract:
The iodimetric determination of triazolethiols and tetrazolethiols in alkaline medium is presented. The volumetric titration with potentiometric end-point detection was applied. The range of determination, in which the error is lower than 1%, is 20-2 000 μmol for 1H-1,2,4-triazole-3-thiol (1), 25-1 000 μmol for 3-phenyl-1H-1,2,4-triazole-5-thiol (2), 25-500 μmol for 4-methyl-5-(trifluoromethyl)-4H-1,2,4-triazole-3-thiol (3), 50-500 μmol for 3-amino-1H-1,2,4-triazole-5-thiol (4), 10-1 000 μmol for sodium (5-mercapto-1H-tetrazol-1-yl)acetate (5), 125-500 μmol for 1-phenyl-1H-tetrazole-5-thiol (6
APA, Harvard, Vancouver, ISO, and other styles
6

Dioukhane, Khadim, Younas Aouine, Salaheddine Boukhssas, Asmae Nakkabi, Hassane Faraj, and Anouar Alami. "Synthesis and Characterization of a Novel Biheterocyclic -amino Acid Precursor of the Triazole-Tetrazole Type, via the Copper (I) Catalyzed Alkyne-Azide Cycloaddition Reaction (CuAAC)." European Journal of Advanced Chemistry Research 2, no. 2 (2021): 7–15. http://dx.doi.org/10.24018/ejchem.2021.2.2.53.

Full text
Abstract:
In this paper, we describe the regioselective synthesis of a novel tri-heterocyclic compound, a biheterocyclic amino acid precursor, derived from both triazole and tetrazole. The key step of our synthesis approach was the Huigsen 1,3-dipolar cycloaddition reaction, catalyzed by the copper (I) formed in situ by reduction of Cu(II) salts (CuSO4), 5H2O) by sodium ascorbate, and using as dipole the oxazoline azide derivative 4-(azidomethyl)-4-ethyl-2-phenyl-4,5-dihydrooxazole (4) and as dipolarophile 5-(4-methoxyphenyl)-2-(prop-2-yn-1-yl)-2H-tetrazole (3). The Cu(I) catalysis allowed us to carry o
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Gang, Chunlin He, Haixiang Gao, Gregory H. Imler, Damon A. Parrish, and Jean'ne M. Shreeve. "Improving the density and properties of nitrogen-rich scaffolds by the introduction of a C–NO2 group." New Journal of Chemistry 42, no. 19 (2018): 16162–66. http://dx.doi.org/10.1039/c8nj03472a.

Full text
Abstract:
5,5′-(Nitromethylene)bis(1H-tetrazole) and 5,5′-(2-(nitromethyl)-2H-1,2,3-triazole-4,5-diyl)bis(1H-tetrazole) were synthesized by introducing a C–NO<sub>2</sub> group to increase the density and detonation performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Tiwari, Vibha, Jacob T. Bingham, Shubham Vyas, and Anand Singh. "Intermolecular fluoroamination of allenes towards substituted vinyl fluorides." Organic & Biomolecular Chemistry 18, no. 44 (2020): 9044–49. http://dx.doi.org/10.1039/d0ob01697g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Yongxing, Chunlin He, Gregory H. Imler, Damon A. Parrish, and Jean'ne M. Shreeve. "Design and synthesis of N-methylene-C linked tetrazole and nitramino-1,2,4-triazole: an approach to promising energetic materials." Journal of Materials Chemistry A 4, no. 36 (2016): 13923–29. http://dx.doi.org/10.1039/c6ta05057c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hamdan, Fatima, Fatemeh Tahoori, and Saeed Balalaie. "Synthesis of novel cyclopeptides containing heterocyclic skeletons." RSC Advances 8, no. 59 (2018): 33893–926. http://dx.doi.org/10.1039/c8ra03899f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!