Academic literature on the topic 'Tribological coatings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tribological coatings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tribological coatings"
Schrader, Tobias, Ulf Engel, and Marion Merklein. "Tribological Characterization of PVD-Coatings." Key Engineering Materials 438 (May 2010): 179–86. http://dx.doi.org/10.4028/www.scientific.net/kem.438.179.
Full textMadej, Monika. "Tribological Properties of Diamond-Like Carbon Coatings." Advanced Materials Research 874 (January 2014): 9–15. http://dx.doi.org/10.4028/www.scientific.net/amr.874.9.
Full textShi, Bai Jun, Yuan Ping Peng, Si Chi Wu, and Hang Li. "Research on Microstructure and Tribological Properties of Cr-Based Hard Coatings." Advanced Materials Research 811 (September 2013): 126–30. http://dx.doi.org/10.4028/www.scientific.net/amr.811.126.
Full textGadhari, Prasanna, and Prasanta Sahoo. "Electroless Nickel-Phosphorus Composite Coatings." International Journal of Manufacturing, Materials, and Mechanical Engineering 6, no. 1 (January 2016): 14–50. http://dx.doi.org/10.4018/ijmmme.2016010102.
Full textZhang, Ya Gang, Wan Chang Sun, Min Ma, Sha Sha Tian, Yu Wan Liu, Yan Xiao, and Rui Kai Xia. "Tribological Behavior of Co-WC Composite Coatings." Materials Science Forum 996 (June 2020): 173–78. http://dx.doi.org/10.4028/www.scientific.net/msf.996.173.
Full textGeng, Zhe, Huadong Huang, Baoshan Lu, Shaohua Wu, and Gaolian Shi. "Tribological behaviour of low-pressure plasma sprayed WC-Co coatings at elevated temperatures." Industrial Lubrication and Tribology 71, no. 2 (March 11, 2019): 258–66. http://dx.doi.org/10.1108/ilt-05-2018-0194.
Full textBartuli, C., T. Valente, F. Casadei, and M. Tului. "Advanced thermal spray coatings for tribological applications." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 221, no. 3 (July 1, 2007): 175–85. http://dx.doi.org/10.1243/14644207jmda135.
Full textConstantin, Lidia R., Anca C. Parau, Mihai Balaceanu, Mihaela Dinu, and Alina Vladescu. "Corrosion and tribological behaviour in a 3.5% NaCl solution of vacuum arc deposited ZrCN and Zr–Cr–Si–C–N coatings." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, no. 1 (April 27, 2018): 158–69. http://dx.doi.org/10.1177/1350650118774132.
Full textKang, S. S., J. M. Dubois, and J. von Stebut. "Tribological properties of quasicrystalline coatings." Journal of Materials Research 8, no. 10 (October 1993): 2471–81. http://dx.doi.org/10.1557/jmr.1993.2471.
Full textMateen, A., Fazal Ahmad Khalid, T. I. Khan, and G. C. Saha. "Wear Behaviour of HVOF Sprayed WC-Cobalt Coatings." Advanced Materials Research 326 (September 2011): 144–50. http://dx.doi.org/10.4028/www.scientific.net/amr.326.144.
Full textDissertations / Theses on the topic "Tribological coatings"
Karlsson, Patrik. "Tribological characterization of selected hard coatings." Thesis, Karlstad University, Faculty of Technology and Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-4219.
Full textHard coatings are often used for protection of tool surfaces due to coating properties like low friction and high wear resistance. Even though many of the hard coatings have been tested for wear, it is important to try new wear test setups to fully understand tribological mechanisms and the potential of hard coatings. Few experiments have been performed with dual-coated systems where the sliding contact surfaces are coated with the same, or different, hard coating. The dual-coated system could be the solution to many new technical devices and perhaps a further improvement of conventional coated systems.
In this thesis, the wear tests of dual-coated systems were performed in dry reciprocating sliding mode at room temperature. This, quite off the ordinary, wear test setup was performed to study selected hard coatings and set focus on wear mechanisms in forthcoming future surface coating application areas like MEMS and orthopedic implants.
Wear tests of four different PVD hard coatings, CrN, TiAlN, WC/C and diamond-like coating (DLC) were performed in a slider-on-flat-surface (SOFS) tribo-tester with reciprocation sliding mode at room temperature and dry sliding with TiAlN coated counter body. Wear mechanisms and the amount of wear were estimated, by investigation of the wear scars produced in SOFS, by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical profilometer (OP).
Typical wear mechanisms found for coated surfaces in reciprocation sliding contact were crack formation, surface flattening for shorter sliding distance, elongation of surface defects, debris and thin film formation. Two types of film formation were found: tribo-oxidation film and formation of a self-lubrication film. The tribo-oxidation was the most evident for CrN and the formation of a self-lubrication film was revealed for DLC, where smearing of asperities were the initiation of the process. The DLC coatings showed lowest friction coefficient and worn volume of all the selected hard coatings.
Adhesion measurements were performed for all coatings by AFM. Both the unworn and worn surface of each coating were investigated and two coatings, DLC and TiAlN, showed low adhesion forces, which indicated promising properties for small scale devices like MEMS and NEMS with coated, non-sticking, surfaces.
Grundutbildningsprogram: Civilingenjör Bred IngångInriktning: Civilingenjör Maskinteknik och Materialteknik
Baxi, Juhi Bhaskar. "Tribological characterization of coatings and nanofluids." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2997.
Full textLuo, Dabing. "Selection of coatings for tribological applications." Ecully, Ecole centrale de Lyon, 2009. http://www.theses.fr/2009ECDL0017.
Full textLes revêtements sont souvent utilisés pour réduire le frottement et protéger les surfaces contre l’usure. Cependant, choisir le revêtement approprié pour une application tribologique donnée est toujours compliqué pare que la réponse tribologique d’un système revêtu dépend de beaucoup trop de facteurs. Les objectifs de cette thèse sont de développer un outil de pré-sélection de revêtements, et de proposer quelques approches permettant d’évaluer et de comparer des revêtements. Basé sur l’étude de la littérature et sur trois études de cas tribologiques, un outil de pré-sélection est développé, en considérant tous les aspects des exigences requises et des limites d’application et caractéristiques des revêtements. Deux études expérimentales sont ensuite effectuées. Un revêtement de MoS2 pulvérisé sous pression est examiné dans trois différentes configurations d’essai pour identifier l’effet des conditions d’essai sur sa performance tribologique. La durée de vie de ce revêtement peut être prévue par les courbes maîtresses basées sur l’énergie dissipée. Cinq revêtements de type vernis de glissement sont également étudiés par des techniques simples d’évaluation et par des essais de fretting. Les performances tribologiques de revêtements dépendent de leur propriétés, et les techniques simples dévaluation peuvent être utilisées pour éliminer de mauvais revêtements, lors du processus de choix. Les performances tribologiques des revêtements sont évaluées en comparant les courbes maîtresses reliant durée de vie et énergie dissipée. Le meilleur revêtement peut alors être choisi, en comparant synthétiquement les revêtements selon divers aspects dans un diagramme polaire
Simonson, William Jeffrey. "Tribological Properties of Mo2N-based Adaptive Coatings." OpenSIUC, 2009. https://opensiuc.lib.siu.edu/theses/15.
Full textAhmed, Omer. "Tribological and Mechanical properties of Multilayered Coatings." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1501763970144729.
Full textMallia, Bertram. "Novel Nanostructured Coatings for Extreme Tribological Environments." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491642.
Full textRenman, Viktor. "Tribological testing of DLC coatings for automotive applications." Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-177355.
Full textStoyanov, Pantcho. "Micro-tribological performance of metal-doped MoS2 coatings." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103709.
Full textLes propriétés mécaniques et tribologiques de revêtements de MoS2 pur, d'Au pur, de Au-MoS2 et de Ti-MoS2 ont été évaluées et examinées à l'échelle microscopique. Les revêtements nanocomposites étudiés contenaient 5-10 % at. de Ti et 10-90 % at. d'Au. Des tests d'usure par glissement alternatif ont été mis en œuvre, l'échelle de pression Hertzienne de contact initiale variant de 0.41 à 3.5 GPa, dans une atmosphère d'air avec deux niveaux d'humidité contrôlée (le niveau le moins élevé se situant entre 3 et 5 % HR et le plus élevé entre 30 et 40 % HR). Pour cette étude, le titane et l'or ont été choisis comme additifs métalliques pour leur influence positive sur les propriétés mécaniques des revêtements. Les comportements de friction et d'usure des revêtements à l'échelle microscopique ont été directement comparés à leurs propriétés tribologiques à l'échelle macroscopique, dont les tests étaient effectués à l'aide d'un tribomètre in situ. Des tests sclérométriques alternatifs ont été réalisés aux échelles microscopiques et macroscopiques avec des pointes de diamant sphérique (10 et 50 µm de rayon) et une pointe de saphir (ayant un rayon de 3.175 mm). La gamme de pression Hertzienne de contact utilisée à l'échelle microscopique (entre 0.41 GPa et 1.2 GPa) était très proche de celle utilisée à l'échelle macroscopique. Cependant, le diamètre de contact Hertzien initial (2*a) était très différent, soit 0.8 – 2.3 µm à l'échelle microscopique et 60 – 180 µm à l'échelle macroscopique. Les résultats montrent que l'ajout de faibles quantités de Ti ou d'Au au MoS2 améliore les propriétés micro-tribologiques (comportements à la friction et à l'usure atténués) en comparaison avec des revêtements de MoS2 pur. L'amélioration des propriétés micro-tribologiques due à l'addition de métaux a été attribuée au renforcement des propriétés mécaniques, une adhésion plus faible et une baisse des contraintes de cisaillement interfaciales. Si l'on compare des tests micro- et macro-tribologiques effectués sur des étendues de longueur variées, ces derniers étaient caractérisés par une friction en régime permanent moins élevée. Le comportement de friction plus accentué dans le cas des tests réalisés à l'échelle microscopique s'explique sur la base d'effets d'adhésion plus importants et des modes additionnels de compensation de vitesse (labourage ou micro-labourage). Les tendances au labourage ou micro-labourage observées à l'échelle microscopique ont été attribuées à la rugosité de la pointe de diamant et à la difficulté de maintenir une couche de film de transfert en place lors de tests effectués dans des conditions d'humidité élevée. L'utilisation de techniques in situ et ex situ a également permis de déterminer trois stades de lubrification solide, en se basant sur des différences observées à la zone de contact, dues aux formes des différentes pointes et aux conditions environnementales appliquées. Le premier stade, avait été identifié auparavant, lors de tests de macro-tribologie sur des revêtements de MoS2, à un niveau d'humidité faible. Par contre, le deuxième stade n'a été observé que lors de tests de micro-tribologie où la taille de la zone de contact était bien plus petite que dans le cas du premier stade. A ce stade, le mécanisme d'usure est principalement relié au comportement d'adhésion du revêtement, avec une influence possible de l'effet de micro-labourage. Le stade final de lubrification a été observé lors de tests de micro-tribologie réalisés dans des conditions d'humidité élevée et caractérisés par l'absence du film de transfert. De cette observation, il a été déduit que le principal mécanisme d'usure du film à ce stade de lubrification correspondait au labourage.
Simonson, W. Jeffrey. "Tribological properties of Mo₂N-based adaptive coatings /." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1879993791&sid=2&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textRoy, Amit. "Tribological Performance of Polymer Based Self-lubricating Coatings." Thesis, Luleå tekniska universitet, Maskinelement, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75576.
Full textBooks on the topic "Tribological coatings"
Ma, Kungjeng. Design and characterisation of tribological coatings. Birmingham: University of Birmingham, 1997.
Find full textDavim, J. Paulo, and Manish Roy. Thermal sprayed coatings and their tribological performances. Hershey, PA: Engineering Science Reference, 2015.
Find full textAbdul-Mahdi, Fadhil S. Tribological characteristics of coatings on aluminium and its alloys. Uxbridge: Brunel University, 1987.
Find full textRonkainen, Helena. Tribological properties of hydrogenated and hydrogen-free diamond-like carbon coatings. Espoo [Finland]: Technical Research Centre of Finland, 2001.
Find full textIntzevidis, Ioannis. The effects of silicone oil additions on the tribological properties of polymer coatings. Salford: University of Salford, 1985.
Find full textInternational Meeting on Modern Ceramics Technologies (12th 2010 Montecatini Terme, Italy). Ceramic thin films and coatings for protective, tribological and multifunctional applications: 12th international ceramics congress, part E. Stafa-Zuerich: Trans Tech Pubs.,on behalf of Techna Group, Faenza, Italy, 2011.
Find full textSymposium K on Coating and Surface Modifications ro Furface Protection and Tribological Applications (1997 Strasbourg, France). Coatings and surface modifications for surface protection and triboligical applications: Proceedings of Symposium K on Coatings and Surface Modifications for Surface Protection and Tribological Applications of the 1997 ICAM/E-MRS Spring Conference, Strasbourg, France, June 16-20, 1997. Amsterdam: Elsevier, 1997.
Find full textDellaCorte, Christopher. Effects of atmosphere on the tribological properties of a chromium carbide based coating for use to 760 C̊. [Washington, DC: National Aeronautics and Space Administration, 1987.
Find full textCoatings and Surface Modifications for Surface Protection and Tribological Applications (European Materials Research Society Symposia Proceedings). Elsevier Science, 1998.
Find full textBudinski, Kenneth G., and Steven T. Budinski. Tribomaterials. ASM International, 2021. http://dx.doi.org/10.31399/asm.tb.tpsfwea.9781627083232.
Full textBook chapters on the topic "Tribological coatings"
Satyanarayana, Nalam, Myo Minn, Mohammed Abdul Samad, and Sujeet K. Sinha. "Polymer Tribological Coatings." In Encyclopedia of Tribology, 2608–14. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_836.
Full textLeyland, Adrian, and Allan Matthews. "Optimization of Nanostructured Tribological Coatings." In Nanostructured Coatings, 511–38. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-48756-4_12.
Full textSilva, Francisco J. G. "Nanoindentation on Tribological Coatings." In Applied Nanoindentation in Advanced Materials, 111–33. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119084501.ch5.
Full textChromik, Richard R., Sima Ahmad Alidokht, J. Michael Shockley, and Yinyin Zhang. "Tribological Coatings Prepared by Cold Spray." In Cold-Spray Coatings, 321–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67183-3_11.
Full textMartin, Peter. "Ion Implantation: Tribological Applications." In Medical Coatings and Deposition Technologies, 473–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119308713.ch13.
Full textMartin, Peter. "Tribological Coatings for Biomedical Devices." In Medical Coatings and Deposition Technologies, 181–231. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119308713.ch6.
Full textGardos, M. N. "Tribological Behavior of Polycrystalline Diamond Films." In Protective Coatings and Thin Films, 185–96. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5644-8_15.
Full textVoevodin, Andrey A., Jeffrey S. Zabinski, and John G. Jones. "Pulsed Laser Deposition of Tribological Coatings." In Pulsed Laser Deposition of Thin Films, 585–609. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470052129.ch23.
Full textSahoo, Prasanta, and Arkadeb Mukhopadhyay. "Tribological Measurement of Electroless Nickel Coatings." In Materials Forming, Machining and Tribology, 125–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03822-9_5.
Full textRichard, Caroline. "Tribological Coatings for High-Temperature Applications." In Encyclopedia of Tribology, 3778–87. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_1194.
Full textConference papers on the topic "Tribological coatings"
Maschewske, Max, Kimm Karrip, and Carol Lynn Deck. "Advanced Tribological Assessment of Ring Coatings." In ASME 2012 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icef2012-92139.
Full textPan, Liming, Ben Dawson, Jacqueline Krim, Colin Baker, James Pearson, Mohammed Zikry, and Andrey Vovoedin. "Nanoscale Design of Adaptive Tribological Coatings." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71196.
Full textRing, Peter J., Prodyot Roy, Gary B. Schuster, and Herbert J. Busboom. "Progress in SP-100 Tribological Coatings." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929235.
Full textClaveria, Isabel, Aleida Lostalé, Cristina Zubizarreta, Gemma Mendoza, Ángel Fernández, Pere Castell, and Daniel Elduque. "Enhancement of Tribological Behavior of ZrCN Coating." In 1st Coatings and Interfaces Web Conference. Basel, Switzerland: MDPI, 2019. http://dx.doi.org/10.3390/ciwc2019-06158.
Full textKleyman, A., and L. Kamo. "Improved High Temperature Iron Oxide Based Tribological Coatings." In ITSC 1996, edited by C. C. Berndt. ASM International, 1996. http://dx.doi.org/10.31399/asm.cp.itsc1996p0135.
Full textGaydaenko, A., I. Palehova, B. Sereda, and D. Sereda. "Advanced Tribological Coatings Titanium Based Coatings Obtaining under SHS Conditions." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019mst/2019/mst_2019_380_387.
Full textGaydaenko, A., I. Palehova, B. Sereda, and D. Sereda. "Advanced Tribological Coatings Titanium Based Coatings Obtaining under SHS Conditions." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019/mst_2019_380_387.
Full textXia, Z. Z., J. P. Tu, D. M. Lai, L. L. Zhang, Q. Wang, L. M. Chen, and D. N. He. "Tribological Properties of Magnetron Sputtered MoS2/Metal (Ti, Mo) Nanocomposite Coatings." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63588.
Full textOtmianowski, T., B. Antoszewski, and W. Zorawski. "Local Laser Treatment of Tribological Plasma Sprayed Coatings." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1333.
Full text"Microstructure and Tribological Properties of DLC Coatings." In Terotechnology XI. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644901038-26.
Full textReports on the topic "Tribological coatings"
CJ Larkin, JD Edington, and BJ Close. A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/884665.
Full textPerry, Scott S. Temperature Dependent Studies of the Tribological Properties of Carbide and Nitride Hard Coatings. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada383260.
Full textJungk, John Michael, Michael Thomas Dugger, Steve M. George, Somuri V. Prasad, Robert K. Grubbs, Neville Reid Moody, Thomas Michael Mayer, Thomas W. Scharf, Ronald S. Goeke, and William W. Gerberich. LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/875621.
Full textNaylor, M. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10176352.
Full textFountzoulas, Costas G., John D. Demaree, Louis C. Sengupta, James K. Hirvonen, and Dimitar Dimitrov. Wear and Tribological Properties of Silicon-Containing Diamond-Like Carbon (Si-DLC) Coatings Synthesized with Nitrogen, Argon Plus Nitrogen, and Argon Ion Beams. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada347548.
Full textBeatty, John H., Paul J. Huang, Constantine G. Fountzoulas, and John V. Kelly. Tribological Evaluation of Magnetron-Sputtered Coating for Military Applications. Fort Belvoir, VA: Defense Technical Information Center, February 1999. http://dx.doi.org/10.21236/ada360673.
Full textStrelnytskiy, Volodymyr E. Characterization and Optimization of Vacuum-arc Plasma Generator for Nanocomposite Tribological Coating Growth. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada524437.
Full textTribological investigations of composites and other selected materials sliding against vacuum-deposited MoS* coatings. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4959.
Full text