Academic literature on the topic 'Tridiagonal matrices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tridiagonal matrices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tridiagonal matrices"
Newman, Morris. "Tridiagonal matrices." Linear Algebra and its Applications 201 (April 1994): 51–55. http://dx.doi.org/10.1016/0024-3795(94)90103-1.
Full textPan, Hongyan, and Zhaolin Jiang. "VanderLaan Circulant Type Matrices." Abstract and Applied Analysis 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/329329.
Full textBarreras, A., and J. M. Peña. "Tridiagonal M-matrices whose inverse is tridiagonal and related pentadiagonal matrices." Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 113, no. 4 (June 27, 2019): 3785–93. http://dx.doi.org/10.1007/s13398-019-00707-3.
Full textYuan, Shifang, Anping Liao, and Yuan Lei. "Inverse eigenvalue problems of tridiagonal symmetric matrices and tridiagonal bisymmetric matrices." Computers & Mathematics with Applications 55, no. 11 (June 2008): 2521–32. http://dx.doi.org/10.1016/j.camwa.2007.10.006.
Full textPerline, Ronald. "Toeplitz Matrices and Commuting Tridiagonal Matrices." SIAM Journal on Matrix Analysis and Applications 12, no. 2 (April 1991): 321–26. http://dx.doi.org/10.1137/0612023.
Full textDahl, Geir. "Tridiagonal doubly stochastic matrices." Linear Algebra and its Applications 390 (October 2004): 197–208. http://dx.doi.org/10.1016/j.laa.2004.04.017.
Full textBeiranvand, Mohammad, and Mojtaba Ghasemi Kamalvand. "Explicit Expression for Arbitrary Positive Powers of Special Tridiagonal Matrices." Journal of Applied Mathematics 2020 (September 12, 2020): 1–5. http://dx.doi.org/10.1155/2020/7290403.
Full textFu, Yaru, Xiaoyu Jiang, Zhaolin Jiang, and Seongtae Jhang. "Analytic determinants and inverses of Toeplitz and Hankel tridiagonal matrices with perturbed columns." Special Matrices 8, no. 1 (May 4, 2020): 131–43. http://dx.doi.org/10.1515/spma-2020-0012.
Full textYALÇINER, AYNUR. "THE LU FACTORIZATIONS AND DETERMINANTS OF THE K-TRIDIAGONAL MATRICES." Asian-European Journal of Mathematics 04, no. 01 (March 2011): 187–97. http://dx.doi.org/10.1142/s1793557111000162.
Full textFan, Hong Ling. "Fast Algorithm for the Inverse Matrices of Periodic Adding Element Tridiagonal Matrices." Advanced Materials Research 159 (December 2010): 464–68. http://dx.doi.org/10.4028/www.scientific.net/amr.159.464.
Full textDissertations / Theses on the topic "Tridiagonal matrices"
Huang, Yuguang. "Algorithm design for structured matrix computations." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325925.
Full textStewart, James A. "The numerical solution of systems of equations with tridiagonal coefficient matrices." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0004/MQ46277.pdf.
Full textZiad, Abderrahmane. "Contributions au calcul numérique des valeurs propres des matrices normales." Saint-Etienne, 1996. http://www.theses.fr/1996STET4001.
Full textArchid, Atika. "Méthodes par blocs adaptées aux matrices structurées et au calcul du pseudo-inverse." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0394/document.
Full textWe study, in this thesis, some numerical block Krylov subspace methods. These methods preserve geometric properties of the reduced matrix (Hamiltonian or skew-Hamiltonian or symplectic). Among these methods, we interest on block symplectic Arnoldi, namely block J-Arnoldi algorithm. Our main goal is to study this method, theoretically and numerically, on using ℝ²nx²s as free module on (ℝ²sx²s, +, x) with s ≪ n the size of block. A second aim is to study the approximation of exp (A)V, where A is a real Hamiltonian and skew-symmetric matrix of size 2n x 2n and V a rectangular matrix of size 2n x 2s on block Krylov subspace Km (A, V) = blockspan {V, AV,...Am-1V}, that preserve the structure of the initial matrix. this approximation is required in many applications. For example, this approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependant partial differential equations (PDEs). We also present a block symplectic structure preserving Lanczos method, namely block J-Lanczos algorithm. Our approach is based on a block J-tridiagonalization procedure of a structured matrix. We propose algorithms based on two normalization methods : the SR factorization and the Rj R factorization. In the last part, we proposea generalized algorithm of Greville method for iteratively computing the Moore-Penrose inverse of a rectangular real matrix. our purpose is to give a block version of Greville's method. All methods are completed by many numerical examples
WAHA, NDEUNA LAURE. "Proprietes des matrices hamiltoniennes dans la base tridiagonale." Université Louis Pasteur (Strasbourg) (1971-2008), 1999. http://www.theses.fr/1999STR13065.
Full textLarriba, Pey Josep Lluís. "Design and evaluation of tridiagonal solvers for vector and parallel computers." Doctoral thesis, Universitat Politècnica de Catalunya, 1995. http://hdl.handle.net/10803/6012.
Full textRocha, Lindomar José. "Determinação de autovalores e autovetores de matrizes tridiagonais simétricas usando CUDA." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/19625.
Full textSubmitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2015-12-15T17:59:17Z No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-02-29T22:14:44Z (GMT) No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Made available in DSpace on 2016-02-29T22:14:44Z (GMT). No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Diversos ramos do conhecimento humano fazem uso de autovalores e autovetores, dentre eles têm-se Física, Engenharia, Economia, etc. A determinação desses autovalores e autovetores pode ser feita utilizando diversas rotinas computacionais, porém umas mais rápidas que outras nesse senário de ganho de velocidade aparece a opção de se usar a computação paralela de forma mais especifica a CUDA da Nvidia é uma opção que oferece um ganho de velocidade significativo, nesse modelo as rotinas são executadas na GPU onde se tem diversos núcleos de processamento. Dada a tamanha importância dos autovalores e autovetores o objetivo desse trabalho é determinar rotinas que possam efetuar o cálculos dos mesmos com matrizes tridiagonais simétricas reais de maneira mais rápida e segura, através de computação paralela com uso da CUDA. Objetivo esse alcançado através da combinação de alguns métodos numéricos para a obtenção dos autovalores e um alteração no método da iteração inversa utilizado na determinação dos autovetores. Temos feito uso de rotinas LAPACK para comparar com as nossas rotinas desenvolvidas em CUDA. De acordo com os resultados, a rotina desenvolvida em CUDA tem a vantagem clara de velocidade quer na precisão simples ou dupla, quando comparado com o estado da arte das rotinas de CPU a partir da biblioteca LAPACK. ______________________________________________________________________________________________ ABSTRACT
Severa branches of human knowledge make use of eigenvalues and eigenvectors, among them we have physics, engineering, economics, etc. The determination of these eigenvalues and eigenvectors can be using various computational routines, som faster than others in this speed increase scenario appears the option to use the parallel computing more specifically the Nvidia’s CUDA is an option that provides a gain of significant speed, this model the routines are performed on the GPU which has several processing cores. Given the great importance of the eigenvalues and eigenvectors the objective of this study is to determine routines that can perform the same calculations with real symmetric tridiagonal matrices more quickly and safely, through parallel computing with use of CUDA. Objective that achieved by some combination of numerical methods to obtain the eigenvalues and a change in the method of inverse iteration used to determine of the eigenvectors, which was used LAPACK routines to compare with routine developed in CUDA. According to the results of the routine developed in CUDA has marked superiority with single or double precision, in the question speed regarding the routines of LAPACK.
Miranda, Wilson Domingos Sidinei Alves. "Algoritmo paralelo para determinação de autovalores de matrizes hermitianas." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/20642.
Full textSubmitted by Raquel Viana (raquelviana@bce.unb.br) on 2016-06-01T21:17:59Z No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-06-01T21:18:27Z (GMT) No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Made available in DSpace on 2016-06-01T21:18:28Z (GMT). No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Um dos principais problemas da álgebra linear computacional é o problema de autovalor, Au = lu, onde A é usualmente uma matriz de ordem grande. A maneira mais efetiva de resolver tal problema consiste em reduzir a matriz A para a forma tridiagonal e usar o método da bissecção ou algoritmo QR para encontrar alguns ou todos os autovalores. Este trabalho apresenta uma implementação em paralelo utilizando uma combinação dos métodos da bissecção, secante e Newton-Raphson para a solução de problemas de autovalores de matrizes hermitianas. A implementação é voltada para unidades de processamentos gráficos (GPUs) visando a utilização em computadores que possuam placas gráficas com arquitetura CUDA. Para comprovar a eficiência e aplicabilidade da implementação, comparamos o tempo gasto entre os algoritmos usando a GPU, a CPU e as rotinas DSTEBZ e DSTEVR da biblioteca LAPACK. O problema foi dividido em três fases, tridiagonalização, isolamento e extração, as duas últimas calculadas na GPU. A tridiagonalização via DSYTRD da LAPACK, calculada em CPU, mostrou-se mais eficiente do que a realizada em CUDA via DSYRDB. O uso do método zeroinNR na fase de extração em CUDA foi cerca de duas vezes mais rápido que o método da bissecção em CUDA. Então o método híbrido é o mais eficiente para o nosso caso. _______________________________________________________________________________________________ ABSTRACT
One of the main problems in computational linear algebra is the eigenvalue problem Au = lu, where A is usually a matrix of big order. The most effective way to solve this problem is to reduce the matrix A to tridiagonal form and use the method of bisection or QR algorithm to find some or all of the eigenvalues. This work presents a parallel implementation using a combination of methods bisection, secant and Newton-Raphson for solving the eigenvalues problem for Hermitian matrices. Implementation is focused on graphics processing units (GPUs) aimed at use in computers with graphics cards with CUDA architecture. To prove the efficiency and applicability of the implementation, we compare the time spent between the algorithms using the GPU, the CPU and DSTEBZ and DSTEVR routines from LAPACK library. The problem was divided into three phases, tridiagonalization, isolation and extraction, the last two calculated on the GPU. The tridiagonalization by LAPACK’s DSYTRD, calculated on the CPU, proved more efficient than the DSYRDB in CUDA. The use of the method zeroinNR on the extraction phase in CUDA was about two times faster than the bisection method in CUDA. So the hybrid method is more efficient for our case.
Ceresoli, Eliamar. "O método de divisão-e-conquista na solução de auto-sistemas de matrizes simétricas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2002. http://hdl.handle.net/10183/1642.
Full textCHERN, JIANN JONG, and 陳建中. "Geometry of Tridiagonal Matrices." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/43801829444561600253.
Full text國立中山大學
應用數學研究所
83
Tridiagonal Matrices are special square matrices. Their nonzero elements only occure at diagonals and subdiagonals. Other entries are zero. Such matrices play an important role in matrix theory and matrix computation. This paper consider such matrix as a function of its diagonal vector, that is, the subdiagonals are fixed constants. If we consider the set of all vectors such that the value of this function is a singular matrix, then this set will be the union of n disjoint surfaces in n dimensional space and each surface is a connected closed set. We will explore the geometric properties of these surfaces. Moreover, the set of all vectors such that the value of the function is a nonsingular matrix and the geometric meaning of eigenvalues will also be discussed in this paper.
Books on the topic "Tridiagonal matrices"
Sun, Xian-He. A fast parallel tridiagonal algorithm for a class of CFD applications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Find full textGill, Doron. An O(N2) method for computing the Eigensystem of N x N symmetric tridiagonal matrices by the divide and conquer approach. Hampton, Va: ICASE, 1988.
Find full textSpectral analysis, differential equations, and mathematical physics: A festschrift in honor of Fritz Gesztesy's 60th birthday. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textAn O(N) method for computing the eigensystem of N x N symmetric tridiagonal matrices by the divide and conquer approach. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.
Find full textBook chapters on the topic "Tridiagonal matrices"
Cullum, Jane K., and Ralph A. Willoughby. "Tridiagonal Matrices." In Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. I Theory, 76–91. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4684-9190-6_4.
Full textCheng, Sui-Sun. "Regular Domains of Tridiagonal Matrices." In Numerical Mathematics Singapore 1988, 105–13. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6303-2_9.
Full textGodunov, S. K., A. G. Antonov, O. P. Kiriljuk, and V. I. Kostin. "Sturm Sequences of Tridiagonal Matrices." In Guaranteed Accuracy in Numerical Linear Algebra, 313–423. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1952-8_4.
Full textLyche, Tom. "Diagonally Dominant Tridiagonal Matrices; Three Examples." In Numerical Linear Algebra and Matrix Factorizations, 27–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36468-7_2.
Full textLyche, Tom, Georg Muntingh, and Øyvind Ryan. "Diagonally Dominant Tridiagonal Matrices; Three Examples." In Texts in Computational Science and Engineering, 17–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59789-4_2.
Full textAdam, Maria, and John Maroulas. "The Joint Numerical Range of Bordered and Tridiagonal Matrices." In Linear Operators and Matrices, 29–41. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8181-4_5.
Full textMastronardi, Nicola, Harold Taeter, and Paul Van Dooren. "On Computing Eigenvectors of Symmetric Tridiagonal Matrices." In Structured Matrices in Numerical Linear Algebra, 181–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04088-8_9.
Full textSpellacy, Louise, and Darach Golden. "Partial Inverses of Complex Block Tridiagonal Matrices." In Parallel Processing and Applied Mathematics, 634–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78024-5_55.
Full textBarreras, Álvaro, and Juan Manuel Peña. "On Tridiagonal Sign Regular Matrices and Generalizations." In Advances in Differential Equations and Applications, 239–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06953-1_23.
Full textTsuchiya, T., and Q. Fang. "An Explicit Inversion Formula for Tridiagonal Matrices." In Topics in Numerical Analysis, 227–38. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6217-0_17.
Full textConference papers on the topic "Tridiagonal matrices"
Coelho, Diego F. G., and Vassil S. Dimitrov. "Fast estimation of tridiagonal matrices largest eigenvalue." In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2017. http://dx.doi.org/10.1109/ccece.2017.7946693.
Full textWang, Hui, and Zhi-bin Li. "The Inverse Eigenproblem for Anti-Tridiagonal Matrices." In 2011 Third Pacific-Asia Conference on Circuits, Communications and System (PACCS). IEEE, 2011. http://dx.doi.org/10.1109/paccs.2011.5990182.
Full textSTRANG, GILBERT. "BLOCK TRIDIAGONAL MATRICES AND THE KALMAN FILTER." In Proceedings of the International Conference of Computational Harmonic Analysis. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776679_0014.
Full textSpellacy, Louise, and Darach Golden. "Partial inverses of block tridiagonal non-Hermitian matrices." In 2016 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2016. http://dx.doi.org/10.1109/hpcsim.2016.7568450.
Full textLi, Zhibin, and Xinxin Zhao. "The Inverse Eigenvalue Problem for Tridiagonal Matrices With Linear Relation." In 2009 First International Conference on Information Science and Engineering. IEEE, 2009. http://dx.doi.org/10.1109/icise.2009.1225.
Full textHolzel, Matthew. "Tridiagonal companion matrices and their use for computing orthogonal and nonorthogonal polynomial zeros." In 2017 25th Mediterranean Conference on Control and Automation (MED). IEEE, 2017. http://dx.doi.org/10.1109/med.2017.7984145.
Full textTaskara, N., K. Uslu, Y. Yazlik, N. Yilmaz, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "The Construction of Horadam Numbers in Terms of the Determinant of Tridiagonal Matrices." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636739.
Full textLuszczek, Piotr, Hatem Ltaief, and Jack Dongarra. "Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures." In Distributed Processing Symposium (IPDPS). IEEE, 2011. http://dx.doi.org/10.1109/ipdps.2011.91.
Full textGarcía-Illescas, M. A., and Luis Alvarez-Icaza. "On-Line Identification of Three-Dimensional Shear Building Models." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5102.
Full textCarrion, Marcelo, Lucia Catabriga, Alvaro Coutinho, William Batty, and Ehsan Naeini. "A Parallel Multigrid Solver For Block-Tridiagonal Stencil Matrices Derived From Acoustic Wave Equation On Large Finite Difference Grids." In CNMAC 2016 - XXXVI Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2017. http://dx.doi.org/10.5540/03.2017.005.01.0098.
Full text