Dissertations / Theses on the topic 'Tridiagonal matrices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Tridiagonal matrices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Huang, Yuguang. "Algorithm design for structured matrix computations." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325925.
Full textStewart, James A. "The numerical solution of systems of equations with tridiagonal coefficient matrices." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0004/MQ46277.pdf.
Full textZiad, Abderrahmane. "Contributions au calcul numérique des valeurs propres des matrices normales." Saint-Etienne, 1996. http://www.theses.fr/1996STET4001.
Full textArchid, Atika. "Méthodes par blocs adaptées aux matrices structurées et au calcul du pseudo-inverse." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0394/document.
Full textWe study, in this thesis, some numerical block Krylov subspace methods. These methods preserve geometric properties of the reduced matrix (Hamiltonian or skew-Hamiltonian or symplectic). Among these methods, we interest on block symplectic Arnoldi, namely block J-Arnoldi algorithm. Our main goal is to study this method, theoretically and numerically, on using ℝ²nx²s as free module on (ℝ²sx²s, +, x) with s ≪ n the size of block. A second aim is to study the approximation of exp (A)V, where A is a real Hamiltonian and skew-symmetric matrix of size 2n x 2n and V a rectangular matrix of size 2n x 2s on block Krylov subspace Km (A, V) = blockspan {V, AV,...Am-1V}, that preserve the structure of the initial matrix. this approximation is required in many applications. For example, this approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependant partial differential equations (PDEs). We also present a block symplectic structure preserving Lanczos method, namely block J-Lanczos algorithm. Our approach is based on a block J-tridiagonalization procedure of a structured matrix. We propose algorithms based on two normalization methods : the SR factorization and the Rj R factorization. In the last part, we proposea generalized algorithm of Greville method for iteratively computing the Moore-Penrose inverse of a rectangular real matrix. our purpose is to give a block version of Greville's method. All methods are completed by many numerical examples
WAHA, NDEUNA LAURE. "Proprietes des matrices hamiltoniennes dans la base tridiagonale." Université Louis Pasteur (Strasbourg) (1971-2008), 1999. http://www.theses.fr/1999STR13065.
Full textLarriba, Pey Josep Lluís. "Design and evaluation of tridiagonal solvers for vector and parallel computers." Doctoral thesis, Universitat Politècnica de Catalunya, 1995. http://hdl.handle.net/10803/6012.
Full textRocha, Lindomar José. "Determinação de autovalores e autovetores de matrizes tridiagonais simétricas usando CUDA." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/19625.
Full textSubmitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2015-12-15T17:59:17Z No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-02-29T22:14:44Z (GMT) No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Made available in DSpace on 2016-02-29T22:14:44Z (GMT). No. of bitstreams: 1 2015_LindomarJoséRocha.pdf: 1300687 bytes, checksum: f028dc5aba5d9f92f1b2ee949e3e3a3d (MD5)
Diversos ramos do conhecimento humano fazem uso de autovalores e autovetores, dentre eles têm-se Física, Engenharia, Economia, etc. A determinação desses autovalores e autovetores pode ser feita utilizando diversas rotinas computacionais, porém umas mais rápidas que outras nesse senário de ganho de velocidade aparece a opção de se usar a computação paralela de forma mais especifica a CUDA da Nvidia é uma opção que oferece um ganho de velocidade significativo, nesse modelo as rotinas são executadas na GPU onde se tem diversos núcleos de processamento. Dada a tamanha importância dos autovalores e autovetores o objetivo desse trabalho é determinar rotinas que possam efetuar o cálculos dos mesmos com matrizes tridiagonais simétricas reais de maneira mais rápida e segura, através de computação paralela com uso da CUDA. Objetivo esse alcançado através da combinação de alguns métodos numéricos para a obtenção dos autovalores e um alteração no método da iteração inversa utilizado na determinação dos autovetores. Temos feito uso de rotinas LAPACK para comparar com as nossas rotinas desenvolvidas em CUDA. De acordo com os resultados, a rotina desenvolvida em CUDA tem a vantagem clara de velocidade quer na precisão simples ou dupla, quando comparado com o estado da arte das rotinas de CPU a partir da biblioteca LAPACK. ______________________________________________________________________________________________ ABSTRACT
Severa branches of human knowledge make use of eigenvalues and eigenvectors, among them we have physics, engineering, economics, etc. The determination of these eigenvalues and eigenvectors can be using various computational routines, som faster than others in this speed increase scenario appears the option to use the parallel computing more specifically the Nvidia’s CUDA is an option that provides a gain of significant speed, this model the routines are performed on the GPU which has several processing cores. Given the great importance of the eigenvalues and eigenvectors the objective of this study is to determine routines that can perform the same calculations with real symmetric tridiagonal matrices more quickly and safely, through parallel computing with use of CUDA. Objective that achieved by some combination of numerical methods to obtain the eigenvalues and a change in the method of inverse iteration used to determine of the eigenvectors, which was used LAPACK routines to compare with routine developed in CUDA. According to the results of the routine developed in CUDA has marked superiority with single or double precision, in the question speed regarding the routines of LAPACK.
Miranda, Wilson Domingos Sidinei Alves. "Algoritmo paralelo para determinação de autovalores de matrizes hermitianas." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/20642.
Full textSubmitted by Raquel Viana (raquelviana@bce.unb.br) on 2016-06-01T21:17:59Z No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-06-01T21:18:27Z (GMT) No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Made available in DSpace on 2016-06-01T21:18:28Z (GMT). No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Um dos principais problemas da álgebra linear computacional é o problema de autovalor, Au = lu, onde A é usualmente uma matriz de ordem grande. A maneira mais efetiva de resolver tal problema consiste em reduzir a matriz A para a forma tridiagonal e usar o método da bissecção ou algoritmo QR para encontrar alguns ou todos os autovalores. Este trabalho apresenta uma implementação em paralelo utilizando uma combinação dos métodos da bissecção, secante e Newton-Raphson para a solução de problemas de autovalores de matrizes hermitianas. A implementação é voltada para unidades de processamentos gráficos (GPUs) visando a utilização em computadores que possuam placas gráficas com arquitetura CUDA. Para comprovar a eficiência e aplicabilidade da implementação, comparamos o tempo gasto entre os algoritmos usando a GPU, a CPU e as rotinas DSTEBZ e DSTEVR da biblioteca LAPACK. O problema foi dividido em três fases, tridiagonalização, isolamento e extração, as duas últimas calculadas na GPU. A tridiagonalização via DSYTRD da LAPACK, calculada em CPU, mostrou-se mais eficiente do que a realizada em CUDA via DSYRDB. O uso do método zeroinNR na fase de extração em CUDA foi cerca de duas vezes mais rápido que o método da bissecção em CUDA. Então o método híbrido é o mais eficiente para o nosso caso. _______________________________________________________________________________________________ ABSTRACT
One of the main problems in computational linear algebra is the eigenvalue problem Au = lu, where A is usually a matrix of big order. The most effective way to solve this problem is to reduce the matrix A to tridiagonal form and use the method of bisection or QR algorithm to find some or all of the eigenvalues. This work presents a parallel implementation using a combination of methods bisection, secant and Newton-Raphson for solving the eigenvalues problem for Hermitian matrices. Implementation is focused on graphics processing units (GPUs) aimed at use in computers with graphics cards with CUDA architecture. To prove the efficiency and applicability of the implementation, we compare the time spent between the algorithms using the GPU, the CPU and DSTEBZ and DSTEVR routines from LAPACK library. The problem was divided into three phases, tridiagonalization, isolation and extraction, the last two calculated on the GPU. The tridiagonalization by LAPACK’s DSYTRD, calculated on the CPU, proved more efficient than the DSYRDB in CUDA. The use of the method zeroinNR on the extraction phase in CUDA was about two times faster than the bisection method in CUDA. So the hybrid method is more efficient for our case.
Ceresoli, Eliamar. "O método de divisão-e-conquista na solução de auto-sistemas de matrizes simétricas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2002. http://hdl.handle.net/10183/1642.
Full textCHERN, JIANN JONG, and 陳建中. "Geometry of Tridiagonal Matrices." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/43801829444561600253.
Full text國立中山大學
應用數學研究所
83
Tridiagonal Matrices are special square matrices. Their nonzero elements only occure at diagonals and subdiagonals. Other entries are zero. Such matrices play an important role in matrix theory and matrix computation. This paper consider such matrix as a function of its diagonal vector, that is, the subdiagonals are fixed constants. If we consider the set of all vectors such that the value of this function is a singular matrix, then this set will be the union of n disjoint surfaces in n dimensional space and each surface is a connected closed set. We will explore the geometric properties of these surfaces. Moreover, the set of all vectors such that the value of the function is a nonsingular matrix and the geometric meaning of eigenvalues will also be discussed in this paper.
TSAI, MING-FEI, and 蔡明妃. "Circularity of the numerical range of tridiagonal matrices." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/92735450513782462865.
Full text東吳大學
數學系
91
Let A be an n-by-n tridiagonal matrix with zero main diagonal. When n=3, 4, 5, we give a necessary and sufficient condition for the numerical range of A to be a circular disk centered at the origin. Necessary conditions for higher dimension are expected to described from the previous patterns.
Lo, Ja-Yaw, and 羅嘉耀. "Singular Surfaces and Regular Domains of Tridiagonal Matrices." Thesis, 1989. http://ndltd.ncl.edu.tw/handle/57229348429464493498.
Full text國立清華大學
數學研究所
77
This paper is concerned with tridiagonal matrices of the form ┌ ┐ │g(1) 1 │ │ 1 g(2) 1 │ A(g)=│ . . . │. │ 1 g(n-1) 1 │ │ 1 g(n)│ └ ┘ where g=(g(1),g(2),...,g(n)) is a real vector in Rn. We treat such a matrix as a function of its diagonal vector g=(g(1),g(2),...,g(n)) and investigate, by means of a three-term recurrence relation, the properties of a partition of Rn which consists of "regular domains" and "singular surfaces" with respect to A(g). In particular, properties related to geometrical, topological, symmetry and oscillatory properties of a general partition are given, and analytic estimates of the sizes of the regular domains, as well as existence and localization of eigenvalues related to linear and nonlinear difference eigenvalue problems are derived as application.
Tsai, Shu-Fen, and 蔡淑芬. "Convergence of the Shifted QR Algorithm on Tridiagonal Matrices." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/92649272131262256810.
Full text國立政治大學
數學研究所
92
The QR algorithm is a popular method for computing all the eigenvalues of a dense matrix. If we use a proper shift, we can accelerate convergence of the iterative process. Hence, we design a new shift strategy which includes an eigenvalue of the trailing principal 3-by-3 submatrix of the tridiagonal matrix. We prove the global convergence of the new strategy. In other words, the purpose of this thesis is to propose a theory of the convergence of a new shifted QR algorithm.
CHEN, KUO CHANG, and 陳國昌. "Finding Eigenvalues of Tridiagonal Symmetric Matrices on Distributed Computing Environment." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/19880870895669885753.
Full text國立中山大學
資訊工程研究所
84
Due to the extremely high cost of supercomputers and the popularity of network-connected worksations, many computation- intensive scientific problems previously only executable on dedicated supercomputers can now be computed within satisfactory time on a cluster of workstations with the aid of Parallel Virtual Machine(PVM), a public domain package for easy implementation of parallel programs. Finding eigenvalues of symmetric matrices is one of the fundamental problems in many scientific and engineering computations , and usually take a significant portion of the total execution time. The split-and- merge algorithm with Laguerre iterations is selected to slove the eigenvalue problem of tridiagonal symmetric matrices on worksation clusters. Due to its high parallelism and low communication overhead. Furthermore, dynamic load balancing is also considered in order to increase the efficiecy of distributed computing. The experimental results show promising speedup comparied to the sequential implemnetation.
LIU, JIA-RI, and 劉嘉日. "Parallel qd-alogrithm for computing the eigenvalues of unsymmetric tridiagonal matrices on ncube computer." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/26507285517695753196.
Full textTian, Wen-Yan, and 田文彥. "Parallel Algorithms for the Eigenvalue Problem on Symmetric Circulant Tridiagonal and Symmetric Quindiagonal Matrices." Thesis, 1997. http://ndltd.ncl.edu.tw/handle/90879552257768024882.
Full text國立中山大學
應用數學研究所
85
To compute the eigenvalues of two special matrices, the symmetric circulant tridiagonal matrix and the symmetric quindiagonal matrix, in this thesis, we propose parallel algorithms based on the bisection method and the Sylvester's law of inertia on these two kinds matrices. The algorithm can be used for calculating some specified eigenvalues of the symmetric tridiagonal matrix. When we apply it on these two kinds matrices, we get a simpler method than the determination notation for the matrix eigenvalue problem.
Yang, Huei-ping, and 楊慧萍. "Inverse Eigenvalue Problems for Tridiagonal Symmetry Matrices with Its Application to Spring-Mass-Damper System." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/23863643028304672473.
Full textVenâncio, Ricardo Filipe Machado. "Option pricing under jump-diffusion models." Master's thesis, 2016. http://hdl.handle.net/10451/27480.
Full textNesta tese, apresentam-se métodos para resolver numericamente equações diferenciais por forma a obter preços de contractos financeiros. Em particular, dá-se ênfase a opções vanilla de estilo europeu e americano cujo activo subjacente segue um modelo de difusão com saltos. Quanto à distribuição destes útltimos, destacam-se o modelo de Merton, que considera que eles têm uma distribuição Normal, e o de Kou, onde é assumida uma dupla distribuição exponencial. Este tipo de modelos representa uma extensão dos clássicos modelos de difusão, como o famoso modelo de Black-Scholes-Merton, e tem como objectivo superar algumas das falhas inerentes a este último, tal como caudas muito curtas e picos baixos da distribuição do logaritmo dos retornos do activo, que não reflectem, em geral, o sentimento dos investores nos mercados financeiros, aliando, ao mesmo tempo, a simplicidade e eficiência dos modelos de difusão. Para alcançar o nosso objectivo, estabelece-se inicialmente qual é a equação que descreve a dinâmica do valor dos preços das opções referidas em relação a vários parâmetros, tal como o valor do preço do activo subjacente e o tempo até à maturidade. Em seguida, constróem-se partições para a resolução numérica do problema, através da discretização da função que descreve o preço do contracto financeiro por diferenças finitas. Esta abordagem é útil visto que permite obter preços de contractos cujo "payoff" não é tão simples quanto o de opções vanilla e para os quais não existem fórmulas fechadas ou semi-fechadas para o seu valor em cada momento do tempo até à sua maturidade. No final, expõem-se os resultados encontrados para diferentes resoluções das partições, comparados com referências da literatura, e apresentam-se algumas conclusões.
In this dissertation, methods to solve numerically partial differential equations in order to obtain prices for contingent claims are presented. In particular, we highlight European and American style vanilla options, whose underlying asset follows a jumpdiffusion model. For the distribution of the jumps, the Merton and Kou models are studied. The former considers these have a Normal distribution, whereas the latter assumes a double-exponential. These type of models represent an extension of the classic diffusion models, such as the famous Black-Scholes-Merton, and has the goal of overcoming its flaws, such as thin tails and low peaks in the distribution of the logarithm of the asset returns, that do not reflect the general investors sentiment in the financial markets, while maintaining the simplicity and tractability inherent to diffusion models. To accomplish our goal, an equation describing the relation of the value of the referred options on several parameters, such as the time-to-maturity and the spot value of the underlying asset is suggested. We then build partitions in order to numerically solve our problem using finite differences, discretizing the function which provides the price of our contingent claim. This approach is useful, since it allows to obtain prices of contracts whose payoff is not as simple as the vanilla options’ and for which it does not exist closed or semi-closed formulae for its value at each point in time until maturity. Finally, we expose results found for each one of partitions considered, comparing them with values in the literature, and some conclusions are presented.