Academic literature on the topic 'Tridiagonal Matrix Algoritm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tridiagonal Matrix Algoritm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tridiagonal Matrix Algoritm"
Zgirouski, A. A., and N. A. Likhoded. "Modified method of parallel matrix sweep." Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 55, no. 4 (January 7, 2020): 425–34. http://dx.doi.org/10.29235/1561-2430-2019-55-4-425-434.
Full textRan, Rui-sheng, Ting-zhu Huang, Xing-ping Liu, and Tong-xiang Gu. "An inversion algorithm for general tridiagonal matrix." Applied Mathematics and Mechanics 30, no. 2 (February 2009): 247–53. http://dx.doi.org/10.1007/s10483-009-0212-x.
Full textMattor, Nathan, Timothy J. Williams, and Dennis W. Hewett. "Algorithm for solving tridiagonal matrix problems in parallel." Parallel Computing 21, no. 11 (November 1995): 1769–82. http://dx.doi.org/10.1016/0167-8191(95)00033-0.
Full textTakahira, S., T. Sogabe, and T. S. Usuda. "Bidiagonalization of (k, k + 1)-tridiagonal matrices." Special Matrices 7, no. 1 (January 1, 2019): 20–26. http://dx.doi.org/10.1515/spma-2019-0002.
Full textChathalingath, Anishchandran, and Arun Manoharan. "Performance Optimization of Tridiagonal Matrix Algorithm [TDMA] on Multicore Architectures." International Journal of Grid and High Performance Computing 11, no. 4 (October 2019): 1–12. http://dx.doi.org/10.4018/ijghpc.2019100101.
Full textDuan, Zhi Jian. "Parallel Algorithm for Solving Block-Tridiagonal Linear Systems." Applied Mechanics and Materials 427-429 (September 2013): 2420–23. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.2420.
Full textEl-Mikkawy, Moawwad, and Faiz Atlan. "A novel algorithm for inverting a generalk-tridiagonal matrix." Applied Mathematics Letters 32 (June 2014): 41–47. http://dx.doi.org/10.1016/j.aml.2014.02.015.
Full textFujiwara, Yasuhiro, Sekitoshi Kanai, Yasutoshi Ida, Atsutoshi Kumagai, and Naonori Ueda. "Fast algorithm for anchor graph hashing." Proceedings of the VLDB Endowment 14, no. 6 (February 2021): 916–28. http://dx.doi.org/10.14778/3447689.3447696.
Full textKumar, Surendra, Shashi, and Árpad Pethö. "An algorithm for the numerical inversion of a tridiagonal matrix." Communications in Numerical Methods in Engineering 9, no. 4 (April 1993): 353–59. http://dx.doi.org/10.1002/cnm.1640090409.
Full textMILOVANOVIĆ, E. I., M. D. MIHAJLOVIĆ, I. Ž. MILOVANOVIĆ, and M. K. STOJČEV. "SOLVING TRIDIAGONAL LINEAR SYSTEMS ON MIMD COMPUTERS." Parallel Processing Letters 04, no. 01n02 (June 1994): 53–64. http://dx.doi.org/10.1142/s0129626494000077.
Full textDissertations / Theses on the topic "Tridiagonal Matrix Algoritm"
Ziad, Abderrahmane. "Contributions au calcul numérique des valeurs propres des matrices normales." Saint-Etienne, 1996. http://www.theses.fr/1996STET4001.
Full textHuang, Yuguang. "Algorithm design for structured matrix computations." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325925.
Full textSILVA, JUNIOR Aluizio Freire da. "Desenvolvimento de ferramentas numéricas e computacionais para a descrição de transferência de massa em corpos cilíndricos: aplicação em desidratação osmótica e secagem complementar de banana." Universidade Federal de Campina Grande, 2015. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/779.
Full textMade available in DSpace on 2018-05-23T00:29:07Z (GMT). No. of bitstreams: 1 ALUIZIO FREIRE DA SILVA JUNIOR – DISSERTAÇÃO (PPGEP) 2015.pdf: 8240920 bytes, checksum: 03c678880f1d1648e407849134c89aa4 (MD5) Previous issue date: 2015-07-31
O presente trabalho tem como objetivo desenvolver ferramentas numéricas e computacionais tendo vista descrever processos difusivos em sólidos com formas cilíndricas. Para isto a equação de difusão, considerando os casos de um cilindro infinito e de um cilindro finito, foi discretizada via método dos volumes finitos com uma formulação totalmente implícita, admitindo uma condição de contorno do terceiro tipo. Para as soluções numéricas obtidas pelas discretizações, foram desenvolvidos softwares na plataforma Windows, utilizando a linguagem de programação Fortran. As soluções desenvolvidas foram validadas pela comparação com resultados fornecidos por soluções analíticas. Os testes realizados indicaram coerência nos resultados fornecidos pelas soluções numéricas. Além disso, a fim de obter os parâmetros físicos dos processos de transferência de massa, um otimizador foi desenvolvido e acoplado às soluções numéricas. Foram realizados testes com o otimizador desenvolvido tendo em vista analisar a capacidade deste em encontrar os valores ótimos de um processo de transferência de massa. Os testes indicaram que o otimizador tem capacidade para obter os parâmetros necessários ao estudo deste trabalho, conseguindo chegar a região que contém os valores ótimos para os parâmetros, mesmo quando considerados valores iniciais distantes destes valores ótimos. A partir dos dados obtidos em experimentos de desidratação osmótica de banana (cortada em pedaços de 10 mm) realizados em combinações de 40 e 70°C de temperatura e 40 e 60 °Brix de concentração, foram realizadas otimizações a fim de obter expressões para descrição das difusividades efetivas de água e sacarose e valores para o coeficiente de transferência convectiva de massa. Os resultados obtidos para as difusividades de água e sacarose estão de acordo com a literatura. Os valores fornecidos pelo otimizador para o coeficiente de transferência convectiva de massa indicaram uma condição de contorno do primeiro tipo. Foram realizadas otimizações a partir dos dados da secagem complementar das amostras osmoticamente desidratadas, e os resultados obtidos para a difusividade de água foram compatíveis com os encontrados na literatura. Foi concluído pelas otimizações que as altas concentrações da desidratação osmótica influenciaram a condição de contorno da secagem complementar.
This study aims to develop numerical and computational tools to describe diffusion processes in solids with cylindrical shapes. For this the diffusion equation, considering the case of an infinite cylinder and a finite cylinder, was discretized via finite volume method with a fully implicit formulation, assuming a boundary condition of the third kind. For the numerical solutions obtained by discretization, software has been developed on the Windows platform using the Fortran programming language. The solutions developed were validated by comparison with results provided by analytical solutions. The tests showed consistency in the results provided by the numerical solutions. Furthermore, in order to obtain the physical parameters of the mass transfer process, was developed an optimizer which was coupled with numerical solutions. Tests were performed with the optimizer developed in order to analyze the capacity of finding the optimal values of a mass transfer process. The tests indicated that the optimizer is able to obtain the parameters necessary for the study of this work, reaching the region containing the optimal values for the parameters, even when initial values were considered far from the optimal values. From the data obtained in banana (cut into pieces of 10 mm) osmotic dehydration experiments performed by combining temperature of 40 and 70 ° C and concentration of 40 and 60 ° Brix, optimizations were carried out to obtain expressions for describing the effective diffusivity of water and sucrose and values for convective mass transfer coefficient. The results obtained for the diffusivities of water and sucrose are in agreement with the literature. The values supplied by the optimizer for the mass convective transfer coefficient indicated a boundary condition of the first kind. Optimizations were carried out from the complementary drying data of osmotically dehydrated samples, and the results obtained for the diffusivity of water were consistent with those found in the literature. It was concluded by the optimizations that high concentrations of osmotic dehydration influenced the boundary condition of the complementary drying.
Miranda, Wilson Domingos Sidinei Alves. "Algoritmo paralelo para determinação de autovalores de matrizes hermitianas." reponame:Repositório Institucional da UnB, 2015. http://repositorio.unb.br/handle/10482/20642.
Full textSubmitted by Raquel Viana (raquelviana@bce.unb.br) on 2016-06-01T21:17:59Z No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-06-01T21:18:27Z (GMT) No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Made available in DSpace on 2016-06-01T21:18:28Z (GMT). No. of bitstreams: 1 2015_WilsonDomingosSidineiAlvesMiranda.pdf: 850688 bytes, checksum: ebf1c7ea3222d989fe0dd442d10edd33 (MD5)
Um dos principais problemas da álgebra linear computacional é o problema de autovalor, Au = lu, onde A é usualmente uma matriz de ordem grande. A maneira mais efetiva de resolver tal problema consiste em reduzir a matriz A para a forma tridiagonal e usar o método da bissecção ou algoritmo QR para encontrar alguns ou todos os autovalores. Este trabalho apresenta uma implementação em paralelo utilizando uma combinação dos métodos da bissecção, secante e Newton-Raphson para a solução de problemas de autovalores de matrizes hermitianas. A implementação é voltada para unidades de processamentos gráficos (GPUs) visando a utilização em computadores que possuam placas gráficas com arquitetura CUDA. Para comprovar a eficiência e aplicabilidade da implementação, comparamos o tempo gasto entre os algoritmos usando a GPU, a CPU e as rotinas DSTEBZ e DSTEVR da biblioteca LAPACK. O problema foi dividido em três fases, tridiagonalização, isolamento e extração, as duas últimas calculadas na GPU. A tridiagonalização via DSYTRD da LAPACK, calculada em CPU, mostrou-se mais eficiente do que a realizada em CUDA via DSYRDB. O uso do método zeroinNR na fase de extração em CUDA foi cerca de duas vezes mais rápido que o método da bissecção em CUDA. Então o método híbrido é o mais eficiente para o nosso caso. _______________________________________________________________________________________________ ABSTRACT
One of the main problems in computational linear algebra is the eigenvalue problem Au = lu, where A is usually a matrix of big order. The most effective way to solve this problem is to reduce the matrix A to tridiagonal form and use the method of bisection or QR algorithm to find some or all of the eigenvalues. This work presents a parallel implementation using a combination of methods bisection, secant and Newton-Raphson for solving the eigenvalues problem for Hermitian matrices. Implementation is focused on graphics processing units (GPUs) aimed at use in computers with graphics cards with CUDA architecture. To prove the efficiency and applicability of the implementation, we compare the time spent between the algorithms using the GPU, the CPU and DSTEBZ and DSTEVR routines from LAPACK library. The problem was divided into three phases, tridiagonalization, isolation and extraction, the last two calculated on the GPU. The tridiagonalization by LAPACK’s DSYTRD, calculated on the CPU, proved more efficient than the DSYRDB in CUDA. The use of the method zeroinNR on the extraction phase in CUDA was about two times faster than the bisection method in CUDA. So the hybrid method is more efficient for our case.
Štrympl, Martin. "Výpočet vlastních čísel a vlastních vektorů hermitovské matice." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242085.
Full textChen, Yu Chuan, and 陳又權. "Augmented Block Cimmino Distributed Algorithm for solving a tridiagonal Matrix on GPU." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/47971311649912636962.
Full text國立清華大學
資訊工程學系
103
The tridiagonal solver nowadays appears as a fundamental component in scientific and engi-neering problems, such as Alternating Direction Implicit methods (ADI), fluid Simulation, and Poisson’s equation. Due to the particular sparse format of tridiagonal matrix, many algorithms of solving the system are conceived. Previously, the main stream of solving the system is by using Diagonal Pivoting to reduce the accuracy issue. But, Diagonal Pivoting has its limits and will lead to error solution while the condition number increases. Augmented Block Cimmino Distributed (ABCD) algorithm serves as another option when trying to resolve the problem accurately. In this thesis, we study and implement the ABCD algorithm on GPU. Because of the spe-cial structure of tridiagonal matrices, we investigate the boundary padding technique to eliminate the execution branches on GPU for better performance. In addition, our implementation incorpo-rates various performance optimization techniques, such as memory coalesce, to further enhance the performance. In the experiments, we evaluate the accuracy and performance of our GPU im-plementation against CPU implementation, and analyze the effectiveness of each performance op-timization technique. The performance of GPU version is about 15 times faster than that of the CPU version.
Books on the topic "Tridiagonal Matrix Algoritm"
Research Institute for Advanced Computer Science (U.S.), ed. An O(logN) parallel algorithm for computing the Eigenvalues of a symmetric tridiagonal matrix. [Moffett Field, Calif.?]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.
Find full textBook chapters on the topic "Tridiagonal Matrix Algoritm"
Stojčev, M. K., E. I. Milovanović, M. D. Mihajlović, and I. Ž. Milovanović. "Parallel algorithm for inverting tridiagonal matrix on linear processor array." In Parallel Processing: CONPAR 94 — VAPP VI, 229–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58430-7_21.
Full textIssakhov, Alibek. "Mathematical Modelling of the Thermal Process in the Aquatic Environment with Considering the Hydrometeorological Condition at the Reservoir-Cooler by Using Parallel Technologies." In Sustaining Power Resources through Energy Optimization and Engineering, 227–43. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9755-3.ch010.
Full textConference papers on the topic "Tridiagonal Matrix Algoritm"
Huang, Jingpin, Liman Chen, and Cong Shen. "Inverse arnoldi algorithm for construction of tridiagonal quaternion matrix." In 2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018. http://dx.doi.org/10.1109/ccdc.2018.8407567.
Full textIannelli, G. S., and A. J. Baker. "Accuracy and Efficiency Assessments for a Weak Statement CFD Algorithm for High-Speed Aerodynamics." In ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-433.
Full textZhang, Wei, and Timothy S. Fisher. "Simulation of Phonon Interfacial Transport in Strained Silicon-Germanium Heterostructures." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80053.
Full textLi, Sumei, and Jiteng Jia. "A Cost-Efficient Numerical Algorithm for Evaluating the Determinant of a Quasi-Tridiagonal Matrix." In 2018 5th International Conference on Systems and Informatics (ICSAI). IEEE, 2018. http://dx.doi.org/10.1109/icsai.2018.8599353.
Full textSankhavara, C. D., and H. J. Shukla. "Influence of Partition Location on Natural Convection in a Partitioned Enclosure." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72093.
Full textSenkal, Caner, and Shuichi Torii. "Thermal Fluid Flow Transport Characteristics in Confined Channels With Two-Dimensional Dual Jet Impingement." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-03015.
Full text