Academic literature on the topic 'Trigonometry functions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Trigonometry functions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Trigonometry functions"
Deddiliawan Ismail, Agung, and Rizal Dian Azmi. "PEMANFAATAN GEOMETER’S SKETCHPAD DALAM MELUKIS FUNGSI TRIGONOMETRI." JINoP (Jurnal Inovasi Pembelajaran) 3, no. 2 (November 28, 2017): 560. http://dx.doi.org/10.22219/jinop.v3i2.4690.
Full textBoyes, G. R. "Trigonometry for Non-Trigonometry Students." Mathematics Teacher 87, no. 5 (May 1994): 372–75. http://dx.doi.org/10.5951/mt.87.5.0372.
Full textWeber, Keith. "Connecting Research to Teaching: Teaching Trigonometric Functions: Lessons Learned from Research." Mathematics Teacher 102, no. 2 (September 2008): 144–50. http://dx.doi.org/10.5951/mt.102.2.0144.
Full textWeber, Keith. "Connecting Research to Teaching: Teaching Trigonometric Functions: Lessons Learned from Research." Mathematics Teacher 102, no. 2 (September 2008): 144–50. http://dx.doi.org/10.5951/mt.102.2.0144.
Full textAntippa, Adel F. "The combinatorial structure of trigonometry." International Journal of Mathematics and Mathematical Sciences 2003, no. 8 (2003): 475–500. http://dx.doi.org/10.1155/s0161171203106230.
Full textJohn Hornsby, E. "A Method of Graphing f(x) = A sin (Bx + C) + D." Mathematics Teacher 83, no. 1 (January 1990): 51–53. http://dx.doi.org/10.5951/mt.83.1.0051.
Full textBaric, Mate, David Brčić, Mate Kosor, and Roko Jelic. "An Axiom of True Courses Calculation in Great Circle Navigation." Journal of Marine Science and Engineering 9, no. 6 (May 31, 2021): 603. http://dx.doi.org/10.3390/jmse9060603.
Full textAnand, M. Clement Joe, and Janani Bharatraj. "Gaussian Qualitative Trigonometric Functions in a Fuzzy Circle." Advances in Fuzzy Systems 2018 (June 3, 2018): 1–9. http://dx.doi.org/10.1155/2018/8623465.
Full textKaplan, Gail. "Activities for Students: Trigonometry through a Ferris Wheel." Mathematics Teacher 102, no. 2 (September 2008): 138–43. http://dx.doi.org/10.5951/mt.102.2.0138.
Full textKaplan, Gail. "Activities for Students: Trigonometry through a Ferris Wheel." Mathematics Teacher 102, no. 2 (September 2008): 138–43. http://dx.doi.org/10.5951/mt.102.2.0138.
Full textDissertations / Theses on the topic "Trigonometry functions"
Jennings, Paul Richard. "Hyperspherical trigonometry, related elliptic functions and integrable systems." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/6892/.
Full textSilva, Jander Carlos Silva e. "As novas tecnologias no contexto escolar: uma abordagem sobre aplicações do GeoGebra em trigonometria." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-17122015-104430/.
Full textThis work presents na approach to new Technologies in the educational context, with a view to applications of the GeoGebra in trigonometry. The goal is to guide teachers of the basic education in preparing lessons using GeoGebra, aiming to enrich trigonometry the in the classroom. The proposed activities are divided into three groups : basic trigonometry, trigonometry functions and trigonometry equations. Each one has a high level of details, in order to encourage the use by teachers with little or no knowledge of the software, and also encourage activities that promote the creation by the students. The idea is that students build the activities, learning how to use the software, interacting by moving objects, and taking their conclusions about the activities. In general, one intends to contribute to the development of logical thinking of students through the teaching of Mathematics adding the use of technology, so that the student is not only a spectator, but, participant of the construction of their own activity.
Baines, Clare Elizabeth. "Topics in functions with symmetry." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343778.
Full textMalambo, Priestly. "Exploring Zambian Mathematics student teachers' content knowledge of functions and trigonometry for secondary schools." Thesis, University of Pretoria, 2015. http://hdl.handle.net/2263/52943.
Full textThesis (PhD)--University of Pretoria, 2015.
Science, Mathematics and Technology Education
PhD
Yadollahi, Farsani Leila. "Topics in the calculus of variations : quasiconvexification of distance functions and geometry in the space of matrices." Thesis, University of Sussex, 2017. http://sro.sussex.ac.uk/id/eprint/68825/.
Full textOLIVEIRA, Carlos André Carneiro de. "Trigonometria: o radiano e as funções seno, cosseno e tangente." Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2169.
Full textMade available in DSpace on 2018-11-12T17:19:37Z (GMT). No. of bitstreams: 1 CARLOS ANDRÉ CARNEIRO DE OLIVEIRA – DISSERTAÇÃO (PPGMat) 2014.pdf: 2129969 bytes, checksum: 19715b30880dbcde6347a169b0fdbdec (MD5) Previous issue date: 2014-04
Este trabalho apresenta um estudo sobre o ensino da trigonometria no ensino médio, contemplando as recomendações sobre esse conteúdo encontradas nos Parâmetros Curriculares Nacionais e uma breve análise desses conteúdos em alguns dos livros recomendados pelo Guia de Livros Didáticos de Matemática - PNLP 2012. Destacando a formação do conceito de radiano; a extensão das razões trigonométricas seno, cosseno e tangente definidas no triângulo retângulo para as funções Trigonométricas de domínio real, além das demonstrações geométricas das fórmulas da adição e da subtração de arcos das funções seno, cosseno e tangente. Apresenta, também, uma sequência didática, com atividades contemplando os conteúdos destacados acima. As atividades foram elaboradas tendo como referência a teoria da aprendizagem significativa e adaptadas ao uso do software GeoGebra.
This work presents a study on the teaching of trigonometry in high school, in accordance with the recommendations about this subject found in National Curriculum Guidelines (Parâmetros Curriculares Nacionais) and a analysis of the content of some of the books recommended by the Mathematics Textbook Guide - PNLP 2012. It highlight the formation of the concept of radian; the extension of trigonometric ratios sine, cosine and tangent defined in the triangle for Trigonometric functions of real field, in addition to the geometrical proofs of the formula of addition and subtraction arches functions sine, cosine and tangent. It also presents a didactic sequence, with activities covering the highlighted contents above. The activities were developed with reference to the meaningful learning theory and adapted to the use of GeoGebra software.
Calderaro, André Bispo. "Análise da possibilidade de inclusão de abordagens alternativas para a função cosseno no ensino médio." Mestrado Profissional em Matemática, 2013. https://ri.ufs.br/handle/riufs/6504.
Full textNeste trabalho, se estabelece como objetivo a análise do processo de elaboração das definiçõoes das funçõoes trigonométricas, particularmente, a definição da funçãao cosseno. Desse modo, é dada uma diretriz no que toca a elaboração de um currículo em que os alunos não fiquem ateados ao conceito de função trigonométrica apenas com base no triângulo retângulo e no ciclo trigonométrico. Portanto, o maior desafio é desenvolver argumentos didáticos para tal, bem como investigar mais detalhadamente as concepções da trigonometria. Com isso, apesar de termos como primeiro capítulo uma breve explanação sobre a história da trigonometria, o trabalho tem como foco o desenvolvimento da definição cosseno de algumas formas, sendo elas: a apresentada nos livros didáticos em que se observa que a mesma é feita com suporte da função de Euler, a definição através de séries de potências, a definição com base na função exponencial com domínio nos complexos e, por fim, a definição como solução de um problema de valor inicial, isto é, uma equação diferencial que satisfaz uma determinada condição inicial. A partir daí será feita uma análise dessas definições observando-se a viabilidade de cada uma delas ser apresentada para os alunos do Ensino Médio.
Souza, Francine Dalavale Tozatto. "Trigonometria no ensino médio e suas aplicações." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-26102018-170937/.
Full textIn this dissertation we present a detailed study about Trigonometry. This subject is frequently discussed em classes during High school courses. We do not only present the main results about Trigonometry but also their proofs, as well examples and exercises. Our main objective here is obtain a complete text for high school teachers. We also present some applications of Trigonometry that can be easily find in our life. Here our main objective is to motivate the study of this important subject that appears so frequently in the exams for universities entrance. To conclude, we present an activity realized with high school students. This dissertation was developed as part of the requirements necessary for the obtension of the degree of Mathematics Professional Master at Instituto de Ciências Matemáticas e de Computação da Universidade de São Paulo (ICMC-USP).
Bruginski, Willian José. "Desenvolvimento de planilhas dinâmicas utilizando o software Geogebra para o estudo de funções trigonométricas." Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/802.
Full textThis work was developed with the intention of creating a new tool to assist in teaching trigonometry. The tool has been created with the support of technological resources and Geogebra software has been chosen for the development of this project. Because the amount of resources that the software provides, especially the ability to work seamlessly geometry and algebra, this was a great ally in the creation of dynamic spreadsheets. Following was developed theoretical part of trigonometric functions with their definitions, characteristics, construction of graphs and contributions that dynamic spreadsheets provide this study were presented.
Dionizio, Fátima Aparecida Queiroz. "CONHECIMENTOS DOCENTES: UMA ANÁLISE DOS DISCURSOS DE PROFESSORES QUE ENSINAM MATEMÁTICA." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2013. http://tede2.uepg.br/jspui/handle/prefix/1349.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study presents an analysis of pedagogical, curricular and content knowledge that teachers of mathematics in basic education, in Ponta Grossa/PR have on Trigonometry. Empirical data was obtained with the use of a tool containing different kinds of errors made by students in Trigonometry exercises to be analyzed and point out possible intervention by the teachers as well as to present responses to Trigonometry concepts. This data was analyzed based on Shulman’s (1986,2001) theoretical contributions and on the functions and discursive operations according to the Register of Semiotic Representation theory by Raymond Duval (2004, 2009, 2011). The research question was: How is knowledge about Trigonometry characterized and what is the nature of the knowledge related to learning issues and Trigonometry teaching presented by mathematics teachers who work in basic education? And the objectives of the study were: to characterize the knowledge of Trigonometry of mathematics teachers working in basic education and; to reveal the nature of mathematics teachers’ knowledge in relation to Trigonometry learning and teaching issues.The research had a qualitative approach, with descriptive and elucidative characteristics, and the analysis methodological procedures were assisted by Bardin’s (2009) content analysis. The organization of data was carried out with the aid of the software Atlas.ti, through which the subject content knowledge, the pedagogical knowledge of content, and the curricular knowledge were gathered within the discourse expansion function proposed by Duval (2004) for later analysis. The results of this study indicate that teachers’ knowledge that was more evident was the knowledge of the subject content. These results point to the need for teachers to be more attentive to other aspects of knowledge also necessary to their education practice and which seem to have been disregarded.
Este trabalho apresenta uma análise dos conhecimentos pedagógicos, curricular e de conteúdo de professores de matemática da Educação Básica, do município de Ponta Grossa/PR, sobre Trigonometria. Os dados empíricos foram obtidos por meio da aplicação de um instrumento contendo diferentes tipos de erros cometidos pelos alunos em atividades de Trigonometria, para a análise e apontamento de possíveis intervenções pedagógicas pelos professores e também respostas a conceitos de Trigonometria. Esses dados foram analisados tendo por subsídios teóricos as contribuições de Shulman (1986, 2001) e as funções e operações discursivas apresentadas na teoria dos Registros de Representação Semiótica segundo Raymond Duval (2004, 2009, 2011). O problema de pesquisa que se buscou responder foi: Como se caracterizam os conhecimentos sobre Trigonometria e qual a natureza dos conhecimentos relativos a questões sobre a aprendizagem e o ensino de Trigonometria apresentados por professores de matemática que atuam na Educação Básica? A partir disso os objetivos da pesquisa foram: caracterizar os conhecimentos sobre Trigonometria apresentados por professores de matemática que atuam na Educação Básica e; desvelar a natureza desses conhecimentos dos professores de matemática em relação a questões sobre o ensino e a aprendizagem da Trigonometria. Para a realização da pesquisa foi adotada a abordagem qualitativa, de cunho descritivo e explicativo, com os procedimentos metodológicos de análise sustentados pela análise de conteúdo de Bardin (2009). A organização dos dados contou com o auxílio do software Atlas.ti por meio do qual foram elencados o conhecimento de conteúdo da matéria, o conhecimento pedagógico de conteúdo e o conhecimento curricular e as funções de expansão dos discursos propostas por Duval (2004), para posterior análise. Os resultados dessa pesquisa indicam que os conhecimentos docentes que se sobressaíram foram os conhecimentos de conteúdo da matéria a ser ensinada. Esses resultados apontam para a necessidade de um olhar mais atento pelos professores sobre os demais saberes necessários à prática educativa e que parecem não estarem sendo postos em prática.
Books on the topic "Trigonometry functions"
Keedy, Mervin Laverne. Trigonometry: Triangles and functions. 4th ed. Reading, Mass: Addison-Wesley Pub. Co., 1986.
Find full textKeedy, Mervin Laverne. Algebra & trigonometry: A functions approach. 4th ed. Reading, Mass: Addison-Wesley, 1986.
Find full textBlitzer, Robert. Algebra & trigonometry. 3rd ed. Upper Saddle River, NJ: Pearson Education, 2007.
Find full textBlitzer, Robert. Algebra & trigonometry. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004.
Find full textBlitzer, Robert. Algebra & trigonometry. Upper Saddle River, NJ: Prentice Hall, 2001.
Find full text1943-, Miller Robert, ed. Precalc with trigonometry. 2nd ed. New York: McGraw-Hill, 1998.
Find full textDemana, Franklin D. Precalculus: Functions and graphs. 3rd ed. Reading, Mass: Addison-Wesley Pub. Co., 1997.
Find full textDemana, Franklin D. Precalculus: Functions and graphs. 2nd ed. Reading, Mass: Addison-Wesley, 1993.
Find full textWaldner, Bruce. Algebra 2/trigonometry. Hauppauge, N.Y: Barron's Educational Series, 2009.
Find full textBook chapters on the topic "Trigonometry functions"
Gelfand, I. M., and Mark Saul. "Graphs of Trigonometric Functions." In Trigonometry, 173–206. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0149-6_9.
Full textGelfand, I. M., and Mark Saul. "Inverse Functions and Trigonometric Equations." In Trigonometry, 207–29. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0149-6_10.
Full textBerry, John, and Patrick Wainwright. "Trigonometric Functions." In Foundation Mathematics for Engineers, 107–40. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11717-8_4.
Full textGrozin, Andrey. "Trigonometric Functions." In Introduction to Mathematica® for Physicists, 125–26. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00894-3_15.
Full textMorais, João Pedro, Svetlin Georgiev, and Wolfgang Sprößig. "Trigonometric Functions." In Real Quaternionic Calculus Handbook, 107–16. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0622-0_6.
Full textBeebe, Nelson H. F. "Trigonometric functions." In The Mathematical-Function Computation Handbook, 299–340. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64110-2_11.
Full textMoll, Victor. "Trigonometric functions." In The Student Mathematical Library, 309–54. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/stml/065/12.
Full textMarsden, Jerrold, and Alan Weinstein. "Trigonometric Functions." In Calculus I, 251–306. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5024-1_8.
Full textSoon, Frederick H. "Trigonometric Functions." In Student’s Guide to Calculus by J. Marsden and A. Weinstein, 221–71. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5146-0_7.
Full textEriksson, Kenneth, Donald Estep, and Claes Johnson. "Trigonometric Functions." In Applied Mathematics: Body and Soul, 505–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05798-8_6.
Full textConference papers on the topic "Trigonometry functions"
Lorenzo, Carl F. "The Fractional Meta-Trigonometry Based on the R-Function: Part I—Background, Definitions, and Complexity Function Graphics." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86731.
Full textLorenzo, Carl F. "The Fractional Morphology and Growth Rate of the Nautilus Pompilius: Preliminary Results Based on the R1-Fractional Trigonometry." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87393.
Full textLorenzo, Carl F. "The Fractional Meta-Trigonometry Based on the R-Function: Part II—Parity Function Graphics, Laplace Transforms, Fractional Derivatives, Meta-Properties." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86733.
Full textWoolley, Ronald Lee. "Transitional Trigonometric Functions." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66426.
Full textLorenzo, Carl F., and Tom T. Hartley. "Mathematical Classification of the Spiral and Ring Galaxy Morphologies Based on the Fractional Trigonometry." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46279.
Full textSun, Baoju. "Inequalities On Generalized Trigonometric Functions." In 2016 3rd International Conference on Mechatronics and Information Technology. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmit-16.2016.2.
Full textLorenzo, Carl F., Rachid Malti, and Tom T. Hartley. "The Solution of Linear Fractional Differential Equations Using the Fractional Meta-Trigonometric Functions." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47395.
Full textDetrey, Jeremie, and Florent de Dinechin. "Floating-Point Trigonometric Functions for FPGAs." In 2007 International Conference on Field Programmable Logic and Applications. IEEE, 2007. http://dx.doi.org/10.1109/fpl.2007.4380621.
Full textBiloti, Ricardo, and Felipe Mariscal Aranha. "How are trigonometric functions indeed computed?" In XXIII Congresso de Iniciação Científica da Unicamp. Campinas - SP, Brazil: Galoá, 2015. http://dx.doi.org/10.19146/pibic-2015-37236.
Full textMalik, Pradeep, Saiful R. Mondal, and A. Swaminathan. "Fractional Integration of Generalized Bessel Function of the First Kind." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48950.
Full textReports on the topic "Trigonometry functions"
Wester, D. W. Trigonometric functions of nonlinear quantities. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10182638.
Full text