Journal articles on the topic 'TRNA-derived stress-induced RNAs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 41 journal articles for your research on the topic 'TRNA-derived stress-induced RNAs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Emara, Mohamed M., Pavel Ivanov, Tyler Hickman, et al. "Angiogenin-induced tRNA-derived Stress-induced RNAs Promote Stress-induced Stress Granule Assembly." Journal of Biological Chemistry 285, no. 14 (2010): 10959–68. http://dx.doi.org/10.1074/jbc.m109.077560.
Full textPereira, Marisa, Diana R. Ribeiro, Miguel M. Pinheiro, Margarida Ferreira, Stefanie Kellner, and Ana R. Soares. "m5U54 tRNA Hypomodification by Lack of TRMT2A Drives the Generation of tRNA-Derived Small RNAs." International Journal of Molecular Sciences 22, no. 6 (2021): 2941. http://dx.doi.org/10.3390/ijms22062941.
Full textWang, Mengjun, Junfeng Guo, Wei Chen, Hong Wang, and Xiaotong Hou. "Emerging roles of tRNA-derived small RNAs in injuries." PeerJ 12 (October 24, 2024): e18348. http://dx.doi.org/10.7717/peerj.18348.
Full textAkiyama, Yasutoshi, Yoshika Takenaka, Tomoko Kasahara, Takaaki Abe, Yoshihisa Tomioka, and Pavel Ivanov. "RTCB Complex Regulates Stress-Induced tRNA Cleavage." International Journal of Molecular Sciences 23, no. 21 (2022): 13100. http://dx.doi.org/10.3390/ijms232113100.
Full textSarais, Fabio, Alvaro Perdomo-Sabogal, Klaus Wimmers, and Siriluck Ponsuksili. "tiRNAs: Insights into Their Biogenesis, Functions, and Future Applications in Livestock Research." Non-Coding RNA 8, no. 3 (2022): 37. http://dx.doi.org/10.3390/ncrna8030037.
Full textLi, Chunmei, Jing Zhu, Han Jin, et al. "Regulation of plant gene expression by tsRNAs in response to abiotic stress." PeerJ 13 (May 23, 2025): e19487. https://doi.org/10.7717/peerj.19487.
Full textAkiyama, Yasutoshi, Prakash Kharel, Takaaki Abe, Paul Anderson, and Pavel Ivanov. "Isolation and initial structure-functional characterization of endogenous tRNA-derived stress-induced RNAs." RNA Biology 17, no. 8 (2020): 1116–24. http://dx.doi.org/10.1080/15476286.2020.1732702.
Full textYamasaki, Satoshi, Pavel Ivanov, Guo-fu Hu, and Paul Anderson. "Angiogenin cleaves tRNA and promotes stress-induced translational repression." Journal of Cell Biology 185, no. 1 (2009): 35–42. http://dx.doi.org/10.1083/jcb.200811106.
Full textLi, Yan, Jun Luo, Hui Zhou, et al. "Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia." Nucleic Acids Research 36, no. 19 (2008): 6048–55. http://dx.doi.org/10.1093/nar/gkn596.
Full textЗайченко, Д. М., А. Ю. Пасько, А. А. Микрюкова та ін. "Фрагменты транспортной РНК при клеточном старении, индуцированном стрессом эндоплазматического ретикулума". Zhurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia» 68, № 1 (2024): 4–14. http://dx.doi.org/10.25557/0031-2991.2024.01.4-14.
Full textYang, Changwon, Garam An, Jisoo Song, Gwonhwa Song, and Whasun Lim. "Palmitic acid induces inflammatory cytokines and regulates tRNA-derived stress-induced RNAs in human trophoblasts." Journal of Animal Reproduction and Biotechnology 37, no. 4 (2022): 218–25. http://dx.doi.org/10.12750/jarb.37.4.218.
Full textWang, Xiaoming, Yining Yang, Xuyan Tan, et al. "Identification of tRNA-Derived Fragments Expression Profile in Breast Cancer Tissues." Current Genomics 20, no. 3 (2019): 199–213. http://dx.doi.org/10.2174/1389202920666190326145459.
Full textSaikia, Mridusmita, and Maria Hatzoglou. "The Many Virtues of tRNA-derived Stress-induced RNAs (tiRNAs): Discovering Novel Mechanisms of Stress Response and Effect on Human Health." Journal of Biological Chemistry 290, no. 50 (2015): 29761–68. http://dx.doi.org/10.1074/jbc.r115.694661.
Full textDeng, Lin, Housheng Wang, Ting Fan, et al. "Potential Functions of the tRNA-Derived Fragment tRF-Gly-GCC Associated With Oxidative Stress in Radiation-Induced Lung Injury." Dose-Response 20, no. 3 (2022): 155932582211287. http://dx.doi.org/10.1177/15593258221128744.
Full textMa, Zhuoyao, Ningyuan Tang, Ruiyan Zhang, et al. "Ribonuclease Inhibitor 1 (RNH1) Regulates Sperm tsRNA Generation for Paternal Inheritance through Interacting with Angiogenin in the Caput Epididymis." Antioxidants 13, no. 8 (2024): 1020. http://dx.doi.org/10.3390/antiox13081020.
Full textKfoury, Youmna, Fei Ji, Michael Mazzola, et al. "Niche Transfer of Small Non-Coding RNAs Regulates Hematopoietic Response to Stress." Blood 134, Supplement_1 (2019): 1207. http://dx.doi.org/10.1182/blood-2019-124794.
Full textChen, Hui, Zhiying Xu, Hua Cai, Ya Peng, Li Yang, and Zhen Wang. "Identifying Differentially Expressed tRNA-Derived Small Fragments as a Biomarker for the Progression and Metastasis of Colorectal Cancer." Disease Markers 2022 (January 6, 2022): 1–10. http://dx.doi.org/10.1155/2022/2646173.
Full textSapetschnig, Alexandra, Beth Thomas, Eliza Yankova, et al. "Abstract LB171: First-in-class inhibitors of the tRNA methyltransferase METTL1 for the treatment of cancer." Cancer Research 84, no. 7_Supplement (2024): LB171. http://dx.doi.org/10.1158/1538-7445.am2024-lb171.
Full textTakenaka, Yoshika, Asuka Yamada, Yoshihisa Tomioka, Yasutoshi Akiyama, and Pavel Ivanov. "RNase L Produces tRNA-derived RNAs that Contribute to Translation Inhibition." RNA, April 15, 2025, rna.080419.125. https://doi.org/10.1261/rna.080419.125.
Full textMao, Mingwen, Weina Chen, Xingbiao Huang, and Dong Ye. "Role of tRNA-derived small RNAs(tsRNAs) in the diagnosis and treatment of malignant tumours." Cell Communication and Signaling 21, no. 1 (2023). http://dx.doi.org/10.1186/s12964-023-01199-w.
Full textPereira, Marisa, Ribeiro Diana R., Pinheiro Miguel M., Margarida Ferreira, Stefanie Kellner, and Ana R. Soares. "m5U54 tRNAHypomodification by Lack of TRMT2ADrivesthe Generation of tRNA-Derived Small RNAs." International Journal of Molecular Sciences 22, no. 6 (2021). https://doi.org/10.3390/ijms22062941.
Full textHogg, Marion. "tRNA fragment biomarkers of Neurological Disease: Challenges and Opportunities." Medical Research Archives 11, no. 3 (2023). http://dx.doi.org/10.18103/mra.v11i3.3688.
Full textWang, Chaojun, Weiqiang Chen, Maimaiti Aili, Lei Zhu, and Yan Chen. "tRNA-derived small RNAs in plant response to biotic and abiotic stresses." Frontiers in Plant Science 14 (January 30, 2023). http://dx.doi.org/10.3389/fpls.2023.1131977.
Full textZhang, Liou, Jie Liu, and Yang Hou. "Classification, function, and advances in tsRNA in non-neoplastic diseases." Cell Death & Disease 14, no. 11 (2023). http://dx.doi.org/10.1038/s41419-023-06250-9.
Full textLou, Yuming, Bifei Fu, Lutong Liu, Jialu Song, Mengying Zhu, and Chaoyang Xu. "The tRF-33/IGF1 Axis Dysregulates Mitochondrial Homeostasis in HER2-Negative Breast Cancer." American Journal of Physiology-Cell Physiology, January 10, 2025. https://doi.org/10.1152/ajpcell.00588.2024.
Full textDrino, Aleksej, Lisa König, Charlotte Capitanchik, et al. "Identification of RNA helicases with unwinding activity on angiogenin-processed tRNAs." Nucleic Acids Research, January 31, 2023. http://dx.doi.org/10.1093/nar/gkad033.
Full textSanadgol, Nasim, Lisa König, Alexej Drino, Michaela Jovic, and Matthias R. Schaefer. "Experimental paradigms revisited: oxidative stress-induced tRNA fragmentation does not correlate with stress granule formation but is associated with delayed cell death." Nucleic Acids Research, June 14, 2022. http://dx.doi.org/10.1093/nar/gkac495.
Full textFallet, Manon, Rachel Wilson, and Peter Sarkies. "Cisplatin exposure alters tRNA-derived small RNAs but does not affect epimutations in C. elegans." BMC Biology 21, no. 1 (2023). http://dx.doi.org/10.1186/s12915-023-01767-z.
Full textBaindoor, Sharada, Hesham A. Y. Gibriel, Morten T. Venø, et al. "Distinct fingerprints of tRNA-derived small non-coding RNA in animal models of neurodegeneration." Disease Models & Mechanisms 17, no. 11 (2024). http://dx.doi.org/10.1242/dmm.050870.
Full textHogg, Marion C., Megan Rayner, Sergej Susdalzew, et al. "5′ValCAC tRNA fragment generated as part of a protective angiogenin response provides prognostic value in amyotrophic lateral sclerosis." Brain Communications 2, no. 2 (2020). http://dx.doi.org/10.1093/braincomms/fcaa138.
Full textFang, Yuan, Yang Liu, Yu Yan, et al. "Differential Expression Profiles and Function Predictions for tRFs & tiRNAs in Skin Injury Induced by Ultraviolet Irradiation." Frontiers in Cell and Developmental Biology 9 (August 10, 2021). http://dx.doi.org/10.3389/fcell.2021.707572.
Full textAkiyama, Yasutoshi, Shawn M. Lyons, Marta M. Fay, et al. "Selective Cleavage at CCA Ends and Anticodon Loops of tRNAs by Stress-Induced RNases." Frontiers in Molecular Biosciences 9 (March 1, 2022). http://dx.doi.org/10.3389/fmolb.2022.791094.
Full textNg, N., H. A. Y. Gibriel, L. Halang, et al. "tRNA derived fragments are altered in diabetes." Diabetic Medicine, November 7, 2023. http://dx.doi.org/10.1111/dme.15258.
Full textLi, Guoping, Manning Aidan, Alex Bagi, et al. "Abstract P384: Distinct Roles Of Cellular And Extracellular TRNA-derived Small RNAs In Myocardial Fibrosis." Circulation Research 129, Suppl_1 (2021). http://dx.doi.org/10.1161/res.129.suppl_1.p384.
Full textZhou, Yun, Qingxiao Hong, Wenjin Xu, et al. "Differential expression profiling of tRNA-Derived small RNAs and their potential roles in methamphetamine self-administered rats." Frontiers in Genetics 14 (February 2, 2023). http://dx.doi.org/10.3389/fgene.2023.1088498.
Full textZhou, Yongqiang, Jinjing Hu, Lu Liu, et al. "Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2." Cancer Cell International 21, no. 1 (2021). http://dx.doi.org/10.1186/s12935-021-02102-8.
Full textXu, Yan, Haidong Zou, Qi Ding та ін. "tiRNA-Val promotes angiogenesis via Sirt1–Hif-1α axis in mice with diabetic retinopathy". Biological Research 55, № 1 (2022). http://dx.doi.org/10.1186/s40659-022-00381-7.
Full textZhao, Lian, Wei Chen, and Wan-liang Guo. "Serum tRNA-derived fragments as potential biomarkers in children with acute intussusception." Archives of Medical Science, July 27, 2021. http://dx.doi.org/10.5114/aoms/140491.
Full textNi, Yingchen, Anqi Wu, Jianxin Li, Weidong Zhang, and Youhua Wang. "Evaluation of the serum tRNA-derived fragment tRF-5022B as a potential biomarker for the diagnosis of osteoarthritis." Journal of Orthopaedic Surgery and Research 18, no. 1 (2023). http://dx.doi.org/10.1186/s13018-023-04273-8.
Full textYou, Jianbin, Guoliu Yang, Yi Wu, et al. "Plasma tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 as novel diagnostic biomarkers for lung adenocarcinoma." Frontiers in Oncology 12 (September 20, 2022). http://dx.doi.org/10.3389/fonc.2022.991451.
Full textWang, Bin, Lin Xia, Dan Zhu, et al. "Paternal High-Fat Diet Altered Sperm 5'tsRNA-Gly-GCC Is Associated With Enhanced Gluconeogenesis in the Offspring." Frontiers in Molecular Biosciences 9 (April 11, 2022). http://dx.doi.org/10.3389/fmolb.2022.857875.
Full text