Academic literature on the topic 'TRNAfMet'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TRNAfMet.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "TRNAfMet"

1

Steiner-Mosonyi, Marta, Carole Creuzenet, Robert A. B. Keates, Benjamin R. Strub, and Dev Mangroo. "ThePseudomonas aeruginosaInitiation Factor IF-2 Is Responsible for Formylation-independent Protein Initiation inP. aeruginosa." Journal of Biological Chemistry 279, no. 50 (2004): 52262–69. http://dx.doi.org/10.1074/jbc.m408086200.

Full text
Abstract:
Formylation of the initiator methionyl-tRNA (Met-tRNAfMet) was generally thought to be essential for initiation of protein synthesis in all eubacteria based on studies conducted primarily inEscherichia coli. However, this view of eubacterial protein initiation has changed because some bacteria have been demonstrated to have the capacity to initiate protein synthesis with the unformylated Met-tRNAfMet. Here we show that thePseudomonas aeruginosainitiation factor IF-2 is required for formylation-independent protein initiation inP. aeruginosa, the first bacterium shown to have the ability to init
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Yan, William B. Holmes, Dean R. Appling, and Uttam L. RajBhandary. "Initiation of Protein Synthesis in Saccharomyces cerevisiae Mitochondria without Formylation of the Initiator tRNA." Journal of Bacteriology 182, no. 10 (2000): 2886–92. http://dx.doi.org/10.1128/jb.182.10.2886-2892.2000.

Full text
Abstract:
ABSTRACT Protein synthesis in eukaryotic organelles such as mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl tRNA (fMet-tRNAfMet) for initiation. Here we show that initiation of protein synthesis in yeast mitochondria can occur without formylation of the initiator methionyl-tRNA (Met-tRNAfMet). The formylation reaction is catalyzed by methionyl-tRNA formyltransferase (MTF) located in mitochondria and usesN 10-formyltetrahydrofolate (10-formyl-THF) as the formyl donor. We have studied yeast mutants carrying chromosomal disruptions of the genes encodin
APA, Harvard, Vancouver, ISO, and other styles
3

Fratte, Sonia Delle, Chiara Piubelli, and Enrico Domenici. "Development of a High-Throughput Scintillation Proximity Assay for the Identification of C-Domain Translational Initiation Factor 2 Inhibitors." Journal of Biomolecular Screening 7, no. 6 (2002): 541–46. http://dx.doi.org/10.1177/1087057102238628.

Full text
Abstract:
Translational initiation factor 2 (IF2) is the largest of the 3 factors required for translation initiation in prokaryotes and has been shown to be essential in Escherichia coli. It stimulates the binding of fMet-tRNAfMet to the 30S ribosomal subunit in the presence of GTP. The selectivity is achieved through specific recognition of the tRNAfMet blocked α-amino group. IF2 is composed of 3 structural domains: N-domain, whose function is not known; G-domain, which contains the GTP/GDP binding site and the GTPase catalytic center; and C-domain, which recognizes and binds fMet-tRNAfMet. Its activi
APA, Harvard, Vancouver, ISO, and other styles
4

Schmitt, Emmanuelle, Michel Panvert, Sylvain Blanquet, and Yves Mechulam. "Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet." EMBO Journal 17, no. 23 (1998): 6819–26. http://dx.doi.org/10.1093/emboj/17.23.6819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Polishchuk, L. V. "Nucleotide sequences of tRNA-methonine genes of Streptomyces globisporus 1912-2, identified in silico." Visnik ukrains'kogo tovaristva genetikiv i selekcioneriv 14, no. 1 (2016): 58–62. http://dx.doi.org/10.7124/visnyk.utgis.14.1.545.

Full text
Abstract:
Aim of this work was to identify nucleotide sequences of tRNAMet of S. globisporus 1912-2. Methods. Resources of server NCBI (programs BLAST: blast, discontiguous megablast and databases: “Genome”, “Nucleotide”) were used for in silico analysis of library of S. grlobisporus 1912-2 contigs. Results. Nucleotide sequences of 4 genes of tRNAMet of S. globisporus 1912-2 were determined in silico. Molecules of tRNA of the II type were translated from tRNAMet gene (Contig No 21 (936–1008 bp)) and the molecules of tRNAfMet genes (Contigs No 299 (1713–1787 bp), No 255 (5941–6015 bp)). Conclusions. 4 ge
APA, Harvard, Vancouver, ISO, and other styles
6

Nomura, Teruaki, Nobuyuki Fujita, and Akira Ishihama. "Promoter selectivity ofEscherichia coliRNA polymerase: alteration by fMet-tRNAfMet." Nucleic Acids Research 14, no. 17 (1986): 6857–70. http://dx.doi.org/10.1093/nar/14.17.6857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodnina, M. V., Y. P. Semenkov, and W. Wintermeyer. "Purification of fMET-tRNAfMET by Fast Protein Liquid Chromatography." Analytical Biochemistry 219, no. 2 (1994): 380–81. http://dx.doi.org/10.1006/abio.1994.1282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ferguson, Blair Q., and David C. H. Yang. "Topographic modeling of free and methionyl-tRNA synthetase-bound tRNAfMet by singlet-singlet energy transfer: bending of the 3'-terminal arm in tRNAfMet." Biochemistry 25, no. 21 (1986): 6572–78. http://dx.doi.org/10.1021/bi00369a035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duroc, Yann, Carmela Giglione, and Thierry Meinnel. "Mutations in Three Distinct Loci Cause Resistance to Peptide Deformylase Inhibitors in Bacillus subtilis." Antimicrobial Agents and Chemotherapy 53, no. 4 (2009): 1673–78. http://dx.doi.org/10.1128/aac.01340-08.

Full text
Abstract:
ABSTRACT Bacillus subtilis mutants with resistance against peptide deformylase inhibitors were isolated. All showed a bypass of the pathway through mutations in three genes required for formylation of Met-tRNAfMet, fmt, folD, and glyA. glyA corresponds to a yet uncharacterized locus inducing resistance. The bypass of formylation caused robust fitness reduction but was not accompanied by alterations of the transcription profile. A subtle adaptation of the enzymes of the intermediary metabolism was observed.
APA, Harvard, Vancouver, ISO, and other styles
10

Guenneugues, Marc, Enrico Caserta, Letizia Brandi, et al. "Mapping the fMet-tRNAfMet binding site of initiation factor IF2." EMBO Journal 19, no. 19 (2000): 5233–40. http://dx.doi.org/10.1093/emboj/19.19.5233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!