Academic literature on the topic 'Tube bending; rotary draw bending; bending parameters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tube bending; rotary draw bending; bending parameters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tube bending; rotary draw bending; bending parameters"
Zhao, Gang Yao, Yu Li Liu, and He Yang. "Numerical Simulation on Influence of Clearance and Friction on Wrinkling in Bending of Aluminum Alloy Rectangular Tubes." Materials Science Forum 546-549 (May 2007): 833–38. http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.833.
Full textSafdarian, R. "Experimental and numerical investigation of wrinkling and tube ovality in the rotary draw bending process." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 16 (May 19, 2019): 5568–84. http://dx.doi.org/10.1177/0954406219850857.
Full textLăzărescu, L. "Numerical and experimental study on rotary draw bending of aluminium alloy tubes." International Review of Applied Sciences and Engineering 2, no. 1 (June 1, 2011): 33–38. http://dx.doi.org/10.1556/irase.2.2011.1.5.
Full textXing, Zhong Wen, Zhi Wei Xu, Hong Liang Yang, and Cheng Xi Lei. "Numerical Research on High-Strength Rectangular Section Steel Tube in Rotary-Draw Bending." Key Engineering Materials 620 (August 2014): 417–23. http://dx.doi.org/10.4028/www.scientific.net/kem.620.417.
Full textZhu, Xia, Keiji Ogi, and Nagatoshi Okabe. "Study on Wrinkles during Rotary-Draw Bending Forming." Materials Science Forum 943 (January 2019): 43–47. http://dx.doi.org/10.4028/www.scientific.net/msf.943.43.
Full textLai, Yi Nan, Sheng Le Ren, G. Y. Zhang, and Gang Feng Liu. "Study on Forming Quality Control of Bending Tube in Power Station Boiler." Key Engineering Materials 392-394 (October 2008): 409–13. http://dx.doi.org/10.4028/www.scientific.net/kem.392-394.409.
Full textZhao, Gang Yao, Yu Li Liu, Shan Tian, and He Yang. "Side Wrinkling Characteristics in Rotary-Draw Bending Process of Thin-Walled Rectangular 3A21 Tube." Materials Science Forum 697-698 (September 2011): 356–60. http://dx.doi.org/10.4028/www.scientific.net/msf.697-698.356.
Full textSafdarian, R., and A. Kord. "Experimental investigation of effective parameters in the tube rotary draw bending process." Materials Research Express 6, no. 6 (March 20, 2019): 066531. http://dx.doi.org/10.1088/2053-1591/ab0c36.
Full textKu, Tae-Wan, Jin-Hyun Cha, Yu-Beom Kim, Ok-Gyu Kwak, Won-Seok Kim, and Beom-Soo Kang. "A study on process parameters for cold U-bending of SUS304L heat transfer tube using rotary draw bending." Journal of Mechanical Science and Technology 27, no. 10 (October 2013): 3053–61. http://dx.doi.org/10.1007/s12206-013-0825-0.
Full textSözen, Levent, Mehmet A. Guler, Deniz Bekar, and Erdem Acar. "Investigation and prediction of springback in rotary-draw tube bending process using finite element method." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, no. 12 (March 2, 2012): 2967–81. http://dx.doi.org/10.1177/0954406212440672.
Full textDissertations / Theses on the topic "Tube bending; rotary draw bending; bending parameters"
Poljak, Peter. "Průzkum a definice mezních parametrů ohybu u stabilizačních tyčí automobilu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230518.
Full textMaleček, Michal. "Limitní parametry technologie ohýbání dílců z trubek." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231684.
Full textBrabec, Martin. "Vliv výrobních parametrů na plasticitu konstrukční oceli." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-416434.
Full textKöseoğlu, Seda, and Hasan Parlak. "Capacity calculator of rotary draw tube bending." Thesis, Linnéuniversitetet, Institutionen för teknik, TEK, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19807.
Full textRaheem, Hassan Hassan [Verfasser]. "Plasto-Mechanical Model of Tube Bending in Rotary Draw Bending Process / Hassan Raheem Hassan." Aachen : Shaker, 2017. http://d-nb.info/1138178209/34.
Full textDere, Fatih. "Experimental And Finite Element Analysis Of Rotary Draw Tube Bending Process." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615433/index.pdf.
Full textŠrom, Jan. "Analýza procesu ohybu trubky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318754.
Full textXue, Xin. "Modelling and control of twist springback in lightweight automotive structures with complex cross-sectional shape." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17766.
Full textEste trabalho é dedicado à investigação dos mecanismos / fontes de retorno elástico torsional em estruturas automóveis leves e à identificação de formas de controlar este problema. Em primeiro lugar, para garantir uma correta modelação do retorno elástico torsional, foram utlizados os resultados de vários ensaios do material, incluindo diferentes solicitações de carga/descarga, assim como a utilização de modelos constitutivos adequados. O comportamento mecânico dos materiais submetidos a trajetórias simples e complexas de carga é descrito utilizando leis de encruamento e critérios de plasticidade anisotrópicos. Foi desenvolvido um novo dispositivo de ensaios de corte para os aços DP para realização de ensaios de inversão de carga. Foram realizados testes cíclicos de carga-descarga-carga de tração uniaxial e biaxial assim como testes de dobragem em três pontos em material pré -deformado com vista à determinação da degradação do módulo de elasticidade com o aumento de deformação plástica. O efeito da trajetória de deformação na determinação do valor inicial do módulo de elasticidade e a sua degradação foram registados e analisados. Em segundo lugar, foram selecionados como casos de estudo dois processos clássicos de deformação plástica de metais, nomeadamente embutidura de chapas de aço DP e dobragem por matriz rotativa de tubos de alumínio de parede fina e secção assimétrica, devido ao seu evidente efeito de retorno elástico torsional. Foi proposta uma definição melhorada de retorno elástico torsional baseada nos eixos principais de inércia da secção transversal. A relação entre o momento de torção e ângulo de torção foi introduzida para explicar a ocorrência de retorno elástico torsional. Para melhorar a robustez dos modelos numéricos, foram realizadas várias técnicas de modelação, incluindo a identificação de coeficiente de atrito, a restrição de acoplamento da superfície para mandril flexível utilizando um elemento conector articulado, e a correlação de imagens digitais. O mecanismo de retorno elástico torsional foi analisado tendo em conta a evolução de estado plano de tensão e a trajetória de deformação nos componentes após a enformação por deformação plástica. Em terceiro lugar, foi analisada e discutida a sensibilidade dos modelos constitutivos de materiais no que diz respeito à precisão da previsão do retorno elástico torsional. Além disso, foi investigada a influência dos parâmetros do processo de embutidura profunda (direção de material, “blank-piercing” e lubrificação) e dos parâmetros numéricos do processo de dobragem de tubos (restrição dos limites do mandril flexível e atrito nas zonas de contacto) no retorno elástico torsional. Finalmente, foram propostas duas estratégias de controlo para o processo de embutidura profunda, com base no raio da curvatura da matriz variável e na posição dos freios, para reduzir o retorno elástico torsional de duas peças “Cchannel” e “P-channel”, respetivamente. No caso de dobragem de tubos, o controlo do retorno elástico torsional foi alcançado pela otimização da função do mandril e inclusão de um assistente de impulso de carga. Estas estratégias de controlo, baseadas em FEA, apresentam-se como métodos alternativos para a redução do momento torsor e do retorno elástico torsional em termos de aplicações específicas.
This work is devoted to the investigation of the mechanism/source of twist springback in lightweight automotive structures and to the identification of ways to control this problem. Firstly, to ensure accurate twist springback modelling, a reliable test data of material behaviours under various loading /unloading conditions as well as appropriate constitutive models are necessary. The anisotropic yield criteria and hardening models were adopted to characterize the material behaviours under monotonic and complex strain paths. An enhanced simple shear device was developed to obtain the stress-strain behaviour under reversal loading of DP steels. Uniaxial and biaxial loadingunloading- loading cycle tests and the proposed three-point bend test with prestrained sheets, were conducted to determine the elastic modulus degradation with the increase of plastic strain. A significant effect of the loading strategy on the determination of the initial and the degradation of elastic modulus was observed and discussed. Secondly, two typical metal forming processes, namely deep drawing of DP steel sheets and mandrel rotary draw bending of asymmetric thin-walled aluminium alloy tube, were selected as case studies due to their evident twist springback. A more reasonable definition of twist springback with respect to the principal inertia axes of the cross-sections was proposed. The relationship between torsion moment and twist angle was introduced to explain the occurrence of twist springback. Several key modelling techniques including the friction coefficient identification, surface-based coupling constraint for flexible mandrel using HINGE connector element and digital image correlation were performed for improving the robustness of the numerical models. The mechanism of twist springback was analysed from the evolution of in-plane stress and deformation history in the components after forming. Thirdly, the sensitivities of material constitutive models to the accuracy of twist springback prediction were analysed and discussed. The influence of deep drawing process parameters (material direction, blank piercing and lubrication) and numerical parameters of tube bending (boundary constraint for flexible mandrel and interfacial friction) on twist springback are provided. Finally, two control strategies for deep drawing process, based on variable die radius and partial draw bead design, were proposed to reduce the twist springback of the C-channel and the P-channel, respectively. In case of tube bending, the control of twist springback was reached by the optimization of mandrel nose placement and inclusion of push assistant loading. These FEAbased control strategies appear to be alternative methods to reduce the unbalance torsion moment and the twist springback in terms of particular case.
Po-JuiChiu and 邱柏叡. "Study on Process Defect Simulation of Tube Rotary Draw Bending with Auxiliary Pushing Device." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/kfrny2.
Full textVarma, N. Siva Prasad. "A Numerical Study Of Localized Necking During Forming Of Aluminium Alloy Tubes Using A Continuum Damage Model." Thesis, 2004. http://etd.iisc.ernet.in/handle/2005/1238.
Full textBook chapters on the topic "Tube bending; rotary draw bending; bending parameters"
Khodayari, G. "Pre-forming: tube rotary draw bending and pre-flattening/crushing in hydroforming." In Hydroforming for Advanced Manufacturing, 181–201. Elsevier, 2008. http://dx.doi.org/10.1533/9781845694418.2.181.
Full textConference papers on the topic "Tube bending; rotary draw bending; bending parameters"
Liu, Kuanxin, Shunqi Zheng, and Gang Chen. "The effects of process parameters on forming limit of rectangular tube in rotary draw bending process." In 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mmme-16.2016.84.
Full textHong, Zhan, Shu Dayu, Yu Maolin, Wu Yang, Chai Shuxin, Wang Yanbin, Li Fei, and Liu Yuli. "Study on the Influence of Process Parameters on Wall Thickness Variation of H96 Waveguide Tube in Rotary Draw Bending." In 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). IEEE, 2020. http://dx.doi.org/10.1109/wcmeim52463.2020.00071.
Full textXue, Xin, Juan Liao, Gabriela Vincze, and Jose J. Gracio. "Optimization of an asymmetric thin-walled tube in rotary draw bending process." In NUMISHEET 2014: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes: Part A Benchmark Problems and Results and Part B General Papers. AIP, 2013. http://dx.doi.org/10.1063/1.4850165.
Full textMayer, Robert R., Dino Oliveira, and Michael Worswick. "S-Rail Sled Testing of Rotary Draw Bent and Hydroformed Aluminum Tubes." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66516.
Full textJohansson, Joel. "A Flexible Design Automation System for Toolsets for the Rotary Draw Bending of Aluminium Tubes." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34310.
Full textDONG, W. Q., Y. L. LIU, G. Y. ZHAO, and H. YANG. "ESTABLISHMENT OF SPRINGBACK PREDICTION MODEL FOR THE ROTARY-DRAW BENDING OF THIN-WALLED RECTANGULAR TUBE CONSIDERING VARIATION OF YOUNG'S MODULUS." In Proceedings of the 10th Asia-Pacific Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814324052_0035.
Full textZhang, Shi-hong, Han Xiao, Jin-song Liu, and Ming Cheng. "Numerical and Experimental Research on Warm Tension-Rotation Bending of Extruded AZ31 Profile." In ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50120.
Full textMayer, Robert R., Scott Webb, Joe McCleary, Ruth Gusko, Dino Oliveira, and Michael Worswick. "S-Rail Sled Testing With Deceleration Sled." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82333.
Full text