Academic literature on the topic 'Tufts-Kumaresan'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tufts-Kumaresan.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tufts-Kumaresan"

1

Watson, Willie R., Mark H. Carpenter, and Michael G. Jones. "Performance of Kumaresan and Tufts Algorithm in Liner Impedance Eduction with Flow." AIAA Journal 53, no. 4 (2015): 1091–102. http://dx.doi.org/10.2514/1.j053705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Porat, B., and B. Friedlander. "A modification of the Kumaresan-Tufts methods for estimating rational impulse responses." IEEE Transactions on Acoustics, Speech, and Signal Processing 34, no. 5 (1986): 1336–38. http://dx.doi.org/10.1109/tassp.1986.1164934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SO, H. C. "A Simple Improvement to Tufts-Kumaresan Method for Multiple Sinusoidal Frequency Estimation." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E88-A, no. 1 (2005): 381–83. http://dx.doi.org/10.1093/ietfec/e88-a.1.381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Porat, B., and B. Friedlander. "On the accuracy of the Kumaresan-Tufts method for estimating complex damped exponentials." IEEE Transactions on Acoustics, Speech, and Signal Processing 35, no. 2 (1987): 231–35. http://dx.doi.org/10.1109/tassp.1987.1165121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nickel, U. "Algebraic formulation of Kumaresan-Tufts superresolution method, showing relation to ME and MUSIC methods." IEE Proceedings F Communications, Radar and Signal Processing 135, no. 1 (1988): 7. http://dx.doi.org/10.1049/ip-f-1.1988.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bakhshi, Mohsen, Reza Noroozian, and G. B. Gharehpetian. "Anti-Islanding Scheme for Synchronous DG Units Based on Tufts–Kumaresan Signal Estimation Method." IEEE Transactions on Power Delivery 28, no. 4 (2013): 2185–93. http://dx.doi.org/10.1109/tpwrd.2013.2271837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kahn, M. H. "Effect of the numerical rank of the coefficient matrix on the performance of the Kumaresan—Tufts Prony method." Chemometrics and Intelligent Laboratory Systems 16, no. 1 (1992): 17–23. http://dx.doi.org/10.1016/0169-7439(92)80074-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zieliński, Tomasz, and Krzysztof Duda. "Frequency and Damping Estimation Methods - An Overview." Metrology and Measurement Systems 18, no. 4 (2011): 505–28. http://dx.doi.org/10.2478/v10178-011-0051-y.

Full text
Abstract:
Frequency and Damping Estimation Methods - An Overview This overview paper presents and compares different methods traditionally used for estimating damped sinusoid parameters. Firstly, direct nonlinear least squares fitting the signal model in the time and frequency domains are described. Next, possible applications of the Hilbert transform for signal demodulation are presented. Then, a wide range of autoregressive modelling methods, valid for damped sinusoids, are discussed, in which frequency and damping are estimated from calculated signal linear self-prediction coefficients. These methods aim at solving, directly or using least squares, a matrix linear equation in which signal or its autocorrelation function samples are used. The Prony, Steiglitz-McBride, Kumaresan-Tufts, Total Least Squares, Matrix Pencil, Yule-Walker and Pisarenko methods are taken into account. Finally, the interpolated discrete Fourier transform is presented with examples of Bertocco, Yoshida, and Agrež algorithms. The Matlab codes of all the discussed methods are given. The second part of the paper presents simulation results, compared with the Cramér-Rao lower bound and commented. All tested methods are compared with respect to their accuracy (systematic errors), noise robustness, required signal length, and computational complexity.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Tufts-Kumaresan"

1

Ruplėnaitė, Eglė. "Signalų įvertinimo specialiu mažiausių kvadratų metodu analizė." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080924_174518-69277.

Full text
Abstract:
Darbe atlikta eksponentinių-sinusinių modelių įvertinimo specialiu mažiausių kvadratų metodu analizė. Apžvelgti pagrindiniai signalo parametrai. Aprašyti signalo modeliai bei jų formos. Išnagrinėtas visuminių mažiausių kvadratų metodas bei jam alternatyvūs metodai: kovariacinis, Tufts-Kumaresan ir Pisarenko. Pateikti šių metodų matematiniai aprašymai. Signalų modelių parametrų analizei sukurtos MATLAB programos bei pateikti jų programiniai kodai. Skaitiniais eksperimentais ištirta, kaip kiekvienas iš metodų veikia, esant skirtingam signalo-triukšmo santykiui. Gauti rezultatai iliustruoti grafiškai. Remiantis sumodeliuotais rezultatais, suformuluotos išvados apie nagrinėjamų metodų galimybes.<br>The aim of this study is to explore exponential-sinusoidal signal model estimation by a special least squares method. The main signal parameters are considered. Signal models and their forms are described. The total least squares method as well as its alternatives – the covariance, Tufts-Kumaresan and Pisarenko methods – are analysed. The mathematical description of these methods is given. MATLAB–based programs to analyse signal model parameters are developed and their codes are presented. We investigated the performance of each of these methods for different signal noise ratio values. The results obtained are illustrated graphically. Conclusions about the method properties are drawn on the basis of simulation experiments.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Tufts-Kumaresan"

1

Shiyong Li, Xin Lv, Houjun Sun, and Weidong Hu. "Multiple scattering centers measurements using the Kumaresan Tufts method." In IET International Conference on Wireless Mobile and Multimedia Networks Proceedings (ICWMMN 2006). IEE, 2006. http://dx.doi.org/10.1049/cp:20061463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography