Academic literature on the topic 'Tumor pathogenesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tumor pathogenesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tumor pathogenesis"
Shimon, I. "Pituitary Tumor Pathogenesis." Journal of Clinical Endocrinology & Metabolism 82, no. 6 (June 1, 1997): 1675–81. http://dx.doi.org/10.1210/jc.82.6.1675.
Full textEllsworth, Rachel E., Jeffrey A. Hooke, Craig D. Shriver, and Darrell L. Ellsworth. "Genomic Heterogeneity of Breast Tumor Pathogenesis." Clinical medicine. Oncology 3 (January 2009): CMO.S2946. http://dx.doi.org/10.4137/cmo.s2946.
Full textTolstykh, Nadezhda V., Alexander F. Gurchin, Nadezhda Yu Koroleva, and Igor D. Stolyarov. "Modern conceptions about the pathogenesis of tumor-related epilepsy." Medical academic journal 19, no. 2 (September 18, 2019): 13–25. http://dx.doi.org/10.17816/maj19213-25.
Full textSano, Keiji. "Pathogenesis of intracranial germ cell tumors reconsidered." Journal of Neurosurgery 90, no. 2 (February 1999): 258–64. http://dx.doi.org/10.3171/jns.1999.90.2.0258.
Full textVorobev, Alexander Viktorovich, Alexander Davidovich Makatsaria, Andrey Mikhailovich Chabrov, and Alexander Anatol’evich Savchenko. "Pathogenesis of Trousseau’s syndrome." Journal of obstetrics and women's diseases 64, no. 4 (September 15, 2015): 85–94. http://dx.doi.org/10.17816/jowd64485-94.
Full textBUDAY, L., and J. DOWNWARD. "Roles of cortactin in tumor pathogenesis." Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1775, no. 2 (June 2007): 263–73. http://dx.doi.org/10.1016/j.bbcan.2006.12.002.
Full textJones, Deborah P., Hazem Mahmoud, and Russell W. Chesney. "Tumor lysis syndrome: pathogenesis and management." Pediatric Nephrology 9, no. 2 (April 1995): 206–12. http://dx.doi.org/10.1007/bf00860751.
Full textNagamine and Mikami. "Ovarian Seromucinous Tumors: Pathogenesis, Morphologic Spectrum, and Clinical Issues." Diagnostics 10, no. 2 (January 31, 2020): 77. http://dx.doi.org/10.3390/diagnostics10020077.
Full textSano, Keiji. "Pathogenesis of intracranial germ cell tumors reconsidered." Neurosurgical Focus 5, no. 1 (July 1998): E3. http://dx.doi.org/10.3171/foc.1998.5.1.4.
Full textZheng, Ruifang, and Debra S. Heller. "Borderline Brenner Tumor: A Review of the Literature." Archives of Pathology & Laboratory Medicine 143, no. 10 (February 19, 2019): 1278–80. http://dx.doi.org/10.5858/arpa.2018-0285-rs.
Full textDissertations / Theses on the topic "Tumor pathogenesis"
Lampa, Jon. "Studies of pharmacological interventions and pathogenesis of rheumatoid arthritis /." Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-372-4/.
Full textLo, Kwok-pui, and 盧國培. "Tumor suppressive role of the α-isoform of transcriptional repressor PRDM1 in the pathogenesis of NK-cell malignancies." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48421388.
Full textpublished_or_final_version
Pathology
Master
Master of Medical Sciences
Shan, Bing. "The novel sumoylation enhancer RSUME is implicated in pituitary tumor pathogenesis." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-123612.
Full textLiu, Wen. "Functional Analysis of the Tumor Metastasis Suppressor, NDRG1." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/347.
Full textLi, Jun. "Role of tumor suppressor ing4 in human cutaneous melanoma pathogenesis and progression." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30234.
Full textAvecilla, Vincent E. "ID3, Estrogenic Chemicals, and the Pathogenesis of Tumor-Like Proliferative Vascular Lesions." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3519.
Full textZewdu, Abeba. "Novel Insights into Dedifferentiated Liposarcoma Pathogenesis: Evaluating the Tumor-Promoting Role of IL6/GP130 Signaling via MDM2 Upregulation." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu15320904714479.
Full textRiding, Rebecca L. "The Role of Type I Interferon in Vitiligo Pathogenesis and Melanoma Immunotherapy." eScholarship@UMMS, 2020. https://escholarship.umassmed.edu/gsbs_diss/1065.
Full textTang, Jun. "The tumor microenvironment in lung cancer pathogenesis: A hint to therapeutic agents and the influence of chronic obstructive pulmonary disease." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/672510.
Full textIntroducción: La enfermedad pulmonar obstructiva crónica (EPOC) es un factor de riesgo independiente para el desarrollo de cáncer de pulmón (CP) en los pacientes. Los mecanismos aún se quedan por dilucidar a comprender las relaciones entre EPOC y CP. Hipótesis: Los componentes del microambiente tumoral pueden diferir en los tumores de pacientes con CP con y sin EPOC. La inmunoterapia también puede reducir la carga tumoral a través de varios mecanismos biológicos. Objetivos: 1) Pacientes: estudiar el papel del microambiente tumoral, las células inmunes, las características del estroma y la sobreactivación de PARP en el proceso de tumorigénesis en pacientes con CP con y sin EPOC. 2) Ratones: evaluar los efectos de la inmunoterapia en el tamaño tumoral mediante el análisis de varios mecanismos biológicos como el estrés oxidativo, la apoptosis y la autofagia. Métodos: 1) Pacientes: se reclutaron 90 pacientes con EPOC-CP y 43 pacientes solo con CP procedentes de la Cohorte Cáncer de Pulmón Mar, Barcelona, desde el año 2008 hasta el 2019. Se obtuvieron muestras pulmonares tumorales y no tumorales en los pacientes mediante toracotomía/cirugía toracoscópica asistida por video (VATS), siempre previo a la quimioterapia y/o radioterapia. 2) Ratones: dos grupos de ratones BALB /c con CP inducido mediante la inoculación subcutánea de células de adenocarcinoma pulmonar LP07: ratones tratados y no tratados, n= 9/grupo. Al grupo tratado se le administró un cóctel de anticuerpos monoclonales (anti-PD-L1, anti-CTLA-4, anti-CD19 y anti-CD137) y una solución tampón (PBS) a los ratones control. Se obtuvieron los tumores en todos los ratones al final del estudio (30 días). Análisis biológico: se utilizaron Western-blot, inmunohistoquímica, ELISA, cultivos celulares, y inmunofluorescencia para evaluar los marcadores biológicos objeto de estudio en cada modelo y tipos de muestras. Resultados: 1) Pacientes: los tumores pulmonares de pacientes con EPOC mostraron niveles más bajos de estructuras linfoides terciarias (ETLs) y centros germinales (CG) respecto de los pacientes sin EPOC. Los niveles más bajos de ELTs y células B en los tumores pulmonares se asociaron con una peor supervivencia a 10 años, especialmente en aquéllos con EPOC. En el estroma tumoral, la presencia de EPOC no se asoció a diferencias en los componentes del estroma tales como la matriz extracelular, los fibroblastos asociados al cáncer o las células endoteliales. Además, los niveles de daño del ADN y la consiguiente activación de PARP estaban más elevados solamente en los tumores pulmonares de los pacientes con EPOC, mientras que la expresión de las enzimas PARP-1 y PARP-2 estaban disminuidas en los tumores pulmonares respecto de las no tumorales, independientemente de la presencia de EPOC. 2) Ratones: la inmunoterapia redujo la carga tumoral a través del aumento de los niveles del estrés oxidativo, apoptosis, autofagia y de vías de señalización como NF-kB y sirtuin-1 en tumores de los ratones tratados comparando con los ratones con CP sin inmunoterapia. Conclusiones: El microambiente inmunológico tumoral, los componentes del estroma y la actividad de PARP se expresan de forma claramente diferenciada en los tumores pulmonares de pacientes con CP con EPOC respecto de los pacientes sin EPOC. La reducción en la formación de ELTs y CGs, el aumento en el daño del ADN y la sobreactivación de PARP probablemente contribuyan a la mayor susceptibilidad para desarrollar CP en pacientes con EPOC. En ratones tratados con la inmunoterapia, el aumento de los niveles de estrés oxidativo junto con la activación de apoptosis y autofagia pueden ser parte de los mecanismos mediante los cuales la inmunoterapia reduce la carga tumoral. En resumen, la presencia de EPOC debe tenerse en cuenta en el diseño de terapias para el CP, incluidas la inmunoterapia y la inhibición de la activación de PARP.
Background: Lung cancer (LC) is a leading cause of death worldwide. Chronic obstructive pulmonary disease (COPD) is a highly prevalent lung disease. COPD has been well established as an independent risk factor for lung tumorigenesis in patients. However, the biological mechanisms that explain the possible associations between lung cancer and COPD remain to be fully elucidated. Hypothesis: The tumor microenvironment components (immune profile, stroma, cytokines, and PARP activation) may differ in tumors of lung cancer patients with and without COPD. Immunotherapy may also reduce tumor burden through several biological events. Objectives: 1) Studies in patients: to elucidate the role of the biological events: tumor microenvironment, immune cell composition, stroma characteristics, and PARP overactivation in the process of tumorigenesis in tumors of patients with and without underlying COPD; 2) Mouse study: to evaluate the effects of immunotherapy on tumor burden through the analyses of several biological mechanisms such as oxidative stress, apoptosis, and autophagy. Methods: Two models were used: 1) Studies in patients: 90 LC patients with underlying COPD and 43 LC-only patients were recruited from 2008 to 2019 from the Lung Cancer Mar Cohort, Barcelona. Lung tumor and the surrounding non-tumor lung specimens were obtained from all study patients through thoracotomy or video-assisted thoracoscopic surgery (VATS) prior to chemotherapy and/or radiotherapy; 2) Mouse study: Two groups of wild-type BALB/C mice with experimental lung cancer (subcutaneous inoculation of LP07 adenocarcinoma cells in the left flank of mice) were established: treated and non-treated mice, n=9/group. In the treatment group, lung cancer mice were treated with a cocktail of monoclonal antibodies (intraperitoneal injection, anti-PD-L1, anti-CTLA-4, anti-CD19, and anti-CD137). Lung tumors were obtained from all mice. Biological analysis: laboratory techniques such as western-blot, immunohistochemistry, ELISA, cell culture, and immunofluorescence were used to assess the target biological markers in each study. Results: 1) Studies in patients: lung tumors of patients with underlying COPD showed lower levels of tertiary lymphoid structures (TLSs) compared to lung cancer only patients. Moreover, lower levels of TLS and B cells in lung tumors were associated with poorer 10-year overall survival rates of patients, especially in those with underlying COPD. In tumor stroma, the presence of COPD did not elicit any significant difference in levels of extracellular matrix, cancer-associated fibroblasts or endothelial cells. In addition, DNA damage and PARP activation levels were higher only in lung tumors of patients with underlying COPD, while PARP-1 and PARP-2 enzyme expression levels were lower in lung tumors compared to non-tumor specimens irrespective of the presence of COPD. 2) Mouse study: treatment with immunotherapy reduced tumor burden through increased levels of oxidative stress, apoptosis, autophagy, and signaling pathways such as NF-kB and sirtuin-1 in tumors of the treated mice compared to tumors of non-treated animals. Conclusions: Tumor immune microenvironment, stroma components, and PARP are differentially expressed in lung tumors of lung cancer patients with underlying COPD. The reduction in TLS and GC formation, the rise in DNA damage, and PARP overactivation probably contribute to the greater susceptibility of COPD patients to develop lung tumors. In mice treated with the combination of monoclonal antibodies, increased levels of oxidative stress along with activated apoptosis and autophagy may be part of the mechanisms whereby immunotherapy may reduce tumor burden. In conclusion, the presence of COPD should be considered when designing therapeutic strategies of lung cancer including immunotherapy as well as PARP activity inhibition.
Universitat Autònoma de Barcelona. Programa de Doctorat en Medicina
Marshall, Aiden Christopher James 1976. "The role of Fas and TNFα in experimental autoimmune gastritis." Monash University, Dept. of Pathology and Immunology, 2003. http://arrow.monash.edu.au/hdl/1959.1/9413.
Full textBooks on the topic "Tumor pathogenesis"
Nose and viral cancer: Etiology, pathogenesis and treatment. New York: Nova Science Publishers, 2010.
Find full textMercier, Isabelle, Jean-François Jasmin, and Michael P. Lisanti. Caveolins in cancer pathogenesis, prevention and therapy. New York, NY: Springer, 2012.
Find full textM, Howley Peter, Broker Thomas R, Burroughs Wellcome Company, and University of California, Los Angeles., eds. Papillomaviruses: Proceedings of a Burroughs-Wellcome-UCLA Symposium held at Taos, New Mexico, March 11-18, 1989. New York, N.Y: Wiley-Liss, 1990.
Find full textPrimary central nervous system tumors: Pathogenesis and therapy. New York: Humana Press, 2011.
Find full text1943-, Eng Kenneth, and Coppa Gene Francis, eds. Anorectal, presacral, and sacral tumors: Anatomy, physiology, pathogenesis, and management. Philadelphia: Saunders, 1987.
Find full textGlioblastoma: Molecular mechanisms of pathogenesis and current therapeutic strategies. Dordrecht: Springer, 2010.
Find full textKhurana, Jasvir S. Essentials in Bone and Soft-Tissue Pathology. Boston, MA: Springer Science+Business Media, LLC, 2010.
Find full text(Editor), Giuseppe Barbanti-Brodano, Mauro Bendinelli (Editor), and Herman Friedman (Editor), eds. DNA Tumor Viruses: Oncogenic Mechanisms (Infectious Agents and Pathogenesis). Springer, 1996.
Find full textAloisio, Medeiros, and Veloso Carlitos, eds. Nose and viral cancer: Etiology, pathogenesis, and treatment. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textMercier, Isabelle, Michael P. Lisanti, and Jean-François Jasmin. Caveolins in Cancer Pathogenesis, Prevention and Therapy. Springer, 2011.
Find full textBook chapters on the topic "Tumor pathogenesis"
Bernard, Hans-Ulrich. "Papillomaviruses: Biology, Diversity, and Pathogenesis." In DNA Tumor Viruses, 127–43. New York, NY: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68945-6_6.
Full textLiebowitz, David. "Pathogenesis of Epstein-Barr Virus." In Human Tumor Viruses, 175–99. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818289.ch5.
Full textWiestler, Otmar D., and Andreas von Deimling. "A Model for the Molecular Pathogenesis of Astrocytic Gliomas." In Brain Tumor, 173–86. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-66887-9_18.
Full textHansen, Hans. "Serologic Approaches to Tumor Diagnosis." In Lymphoproliferative Diseases: Pathogenesis, Diagnosis, Therapy, 107–13. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5016-0_9.
Full textMischel, Paul S., and Harry V. Vinters. "Neuropathology and Molecular Pathogenesis of Primary Brain Tumors." In Brain Tumor Immunotherapy, 3–45. Totowa, NJ: Humana Press, 2001. http://dx.doi.org/10.1007/978-1-59259-035-3_1.
Full textSowa, Grzegorz. "Caveolins in Tumor Angiogenesis." In Caveolins in Cancer Pathogenesis, Prevention and Therapy, 75–90. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1001-0_6.
Full textZimmermann, Arthur. "Etiology and Pathogenesis of Hepatocellular Carcinoma: Epigenetic Mechanisms." In Tumors and Tumor-Like Lesions of the Hepatobiliary Tract, 1–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26587-2_168-1.
Full textZimmermann, Arthur. "Etiology and Pathogenesis of Hepatocellular Carcinoma: Epigenetic Mechanisms." In Tumors and Tumor-Like Lesions of the Hepatobiliary Tract, 3029–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26956-6_168.
Full textKerzerho, Jerome, Florence Anne Castelli, and Bernard Maillère. "Midkine as a Tumor-Shared Antigen." In Midkine: From Embryogenesis to Pathogenesis and Therapy, 247–58. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4234-5_22.
Full textAlouf, Joseph E. "Immunomodulating Toxins and Tumor Necrosis Factors." In Pathogenesis of Wound and Biomaterial-Associated Infections, 101–5. London: Springer London, 1990. http://dx.doi.org/10.1007/978-1-4471-3454-1_12.
Full textConference papers on the topic "Tumor pathogenesis"
Aggarwal, Sadhna, Suresh C. Sharma, and Satya N. Das. "Abstract PO082: Significance of Treg cells in pathogenesis of oral squamous cell carcinoma." In Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; October 19-20, 2020. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/2326-6074.tumimm20-po082.
Full textKegelman, Timothy P., Swadesh K. Das, Bin Hu, Mitchell Menezes, Luni Emdad, Santanu Dasgupta, Albert S. Baldwin, et al. "Abstract B85: MDA-9/syntenin is a key regulator of glioma pathogenesis." In Abstracts: AACR Special Conference on Tumor Invasion and Metastasis - January 20-23, 2013; San Diego, CA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tim2013-b85.
Full textHess, J., S. Homann, N. Koerich Laureano, B. Tawk, M. Bieg, X. Pastor Hostenech, K. Freier, W. Weichert, K. Zaoui, and J. Hess. "Tumor cell plasticity in the pathogenesis and prognosis of head and neck cancer." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640039.
Full textPhi, Ji Hoon, Seung Ah Choi, Yong Hwy Kim, Young-Hoon Kim, Chul-Kee Park, Kyu-Chang Wang, and Seung-Ki Kim. "Abstract 3107: The role of LIN28 in atypical teratoid rhabdoid tumor (ATRT) pathogenesis." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3107.
Full textBartek, Jiri, and Jirina Bartkova. "Abstract IA13: Replication stress in cancer pathogenesis: Mechanisms and treatment opportunities." In Abstracts: AACR Special Conference on DNA Repair: Tumor Development and Therapeutic Response; November 2-5, 2016; Montreal, QC, Canada. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1557-3125.dnarepair16-ia13.
Full textZhao, Shuying, Lyazat Kurenbekova, Lawrence A. Donehower, and Jason T. Yustein. "Abstract A85: Novel mouse models to investigate the molecular pathogenesis of metastatic osteosarcoma." In Abstracts: AACR Special Conference on Tumor Invasion and Metastasis - January 20-23, 2013; San Diego, CA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tim2013-a85.
Full textTaylor, Holly, Jaroslav Slamecka, Alla Musiyenko, Elaine Gavin, Tiffany S. Norton, Ileana Aragon, Taylor Young, et al. "Abstract B31: Tumor-intrinsic B7-H3 regulates drug resistance, metabolism, and pathogenesis in ovarian cancer." In Abstracts: AACR Special Conference: Addressing Critical Questions in Ovarian Cancer Research and Treatment; October 1-4, 2017; Pittsburgh, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.ovca17-b31.
Full textChan, Lok Hei, Kai Yu Ng, and Stephanie Ma. "Abstract 2333: The tumor suppressive role of PRMT6 in regulating the pathogenesis of hepatocellular carcinoma." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2333.
Full textHu, Wei-Xin, Sai-Qun Luo, Yan Zhong, Xiu-Feng Bu, and Yang Zhou. "Abstract LB-070: The studies of tumor-associated gene C1orf35 in pathogenesis of human multiple myeloma." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-lb-070.
Full textMitra, Sheetal A., Anirban P. Mitra, Yang Liu, Jonathan D. Buckley, and Timothy J. Triche. "Abstract 2066: The functional noncoding genome in childhood sarcomas plays important regulatory roles in tumor pathogenesis." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2066.
Full textReports on the topic "Tumor pathogenesis"
Asgharzadeh, Shahab. Studies of the Tumor Microenvironment in Pathogenesis of Neuroblastoma. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada568118.
Full textAsgharzadeh, Shahab. Studies of the Tumor Microenvironment in Pathogenesis of Neuroblastoma. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada591449.
Full textShao, Rong, and Xiao-Fan Wang. Functional Characterization of TPF (Tumor Promoting Factor), a Novel Angiogenic Factor in Breast Cancer Pathogenesis. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada418988.
Full textShao, Rong, and Xiao-Fan Wang. Functional Characterization of TPF (Tumor Promoting Factor), A Novel Angiogenic Factor in Breast Cancer Pathogenesis. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada426921.
Full textKurman, Robert J., and Ie-Ming Shih. Pathogenesis of Ovarian Serous Carcinoma as the Basis for Immunologic Directed Diagnosis and Treatment. Project 1 - Molecular Characterization of Ovarian Serous Tumors Developing Along Different Pathways. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada420920.
Full text