Journal articles on the topic 'Tunable cavities'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Tunable cavities.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dongdong Liu, Dongdong Liu, Qiubo Fan Qiubo Fan, Maofei Mei Maofei Mei, et al. "Tunable multiple plasmon-induced transparency with side-coupled rectangle cavities." Chinese Optics Letters 14, no. 5 (2016): 052302–52305. http://dx.doi.org/10.3788/col201614.052302.
Full textde Lima, M. M., P. V. Santos, Yu A. Kosevich, and A. Cantarero. "Tunable coupled surface acoustic cavities." Applied Physics Letters 100, no. 26 (2012): 261904. http://dx.doi.org/10.1063/1.4730398.
Full textOliveira Bilobran, Andre Luiz, Alberto Garcia-Cristobal, Paulo Ventura Santos, Andres Cantarero, and Mauricio Morais de Lima. "Thermally Tunable Surface Acoustic Wave Cavities." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 67, no. 4 (2020): 850–54. http://dx.doi.org/10.1109/tuffc.2019.2952982.
Full textZhang, Shuai, Li-Bin Cui, Xiao Zhang, Jun-Hua Tong, and Tianrui Zhai. "Tunable polymer lasing in chirped cavities." Optics Express 28, no. 3 (2020): 2809. http://dx.doi.org/10.1364/oe.382536.
Full textSabchevski, S., and T. Idehara. "Resonant Cavities for Frequency Tunable Gyrotrons." International Journal of Infrared and Millimeter Waves 29, no. 1 (2007): 1–22. http://dx.doi.org/10.1007/s10762-007-9297-6.
Full textMöhle, Katharina, Evgeny V. Kovalchuk, Klaus Döringshoff, Moritz Nagel, and Achim Peters. "Highly stable piezoelectrically tunable optical cavities." Applied Physics B 111, no. 2 (2013): 223–31. http://dx.doi.org/10.1007/s00340-012-5322-0.
Full textSun, Sha, Mingyang Wang, Feifei Zhang, and Jin Zhu. "DNA polygonal cavities with tunable shapes and sizes." Chemical Communications 51, no. 90 (2015): 16247–50. http://dx.doi.org/10.1039/c5cc06092c.
Full textPetruzzella, M., S. Birindelli, F. M. Pagliano, et al. "Quantum photonic integrated circuits based on tunable dots and tunable cavities." APL Photonics 3, no. 10 (2018): 106103. http://dx.doi.org/10.1063/1.5039961.
Full textMaehara, Takeshi, Ryo Sekiya, Kentaro Harada, and Takeharu Haino. "Tunable enforced cavities inside self-assembled capsules." Organic Chemistry Frontiers 6, no. 10 (2019): 1561–66. http://dx.doi.org/10.1039/c9qo00010k.
Full textPruessner, Marcel W., Doewon Park, Brian J. Roxworthy, et al. "Loss reduction in electromechanically tunable microring cavities." Optics Letters 44, no. 13 (2019): 3346. http://dx.doi.org/10.1364/ol.44.003346.
Full textZhang, Zhonghai, Fei Zhao, and Aiting Wu. "A tunable open ring coupling structure and its application in fully tunable bandpass filter." International Journal of Microwave and Wireless Technologies 11, no. 08 (2019): 782–86. http://dx.doi.org/10.1017/s1759078719000485.
Full textZueco, D., C. Fernández-Juez, J. Yago, et al. "From Josephson junction metamaterials to tunable pseudo-cavities." Superconductor Science and Technology 26, no. 7 (2013): 074006. http://dx.doi.org/10.1088/0953-2048/26/7/074006.
Full textSrinivasan, P., C. O. Gollasch, and M. Kraft. "Three dimensional electrostatic actuators for tunable optical micro cavities." Sensors and Actuators A: Physical 161, no. 1-2 (2010): 191–98. http://dx.doi.org/10.1016/j.sna.2010.05.012.
Full textVincent, Serge, Xin Jiang, Philip Russell, and Frank Vollmer. "Thermally tunable whispering-gallery mode cavities for magneto-optics." Applied Physics Letters 116, no. 16 (2020): 161110. http://dx.doi.org/10.1063/5.0006367.
Full textD. Yaseen, Suran. "Tunable optical cavities for wavelength Indications in Gas Laser." Kirkuk University Journal-Scientific Studies 11, no. 1 (2016): 259–72. http://dx.doi.org/10.32894/kujss.2016.124392.
Full textSiegle, T., M. Remmel, S. Krämmer, and H. Kalt. "Split-disk micro-lasers: Tunable whispering gallery mode cavities." APL Photonics 2, no. 9 (2017): 096103. http://dx.doi.org/10.1063/1.4985766.
Full textSaavedra, Carlos, Deepak Pandey, Wolfgang Alt, Hannes Pfeifer, and Dieter Meschede. "Tunable fiber Fabry-Perot cavities with high passive stability." Optics Express 29, no. 2 (2021): 974. http://dx.doi.org/10.1364/oe.412273.
Full textRosolen, Gilles, and Bjorn Maes. "Graphene ribbons for tunable coupling with plasmonic subwavelength cavities." Journal of the Optical Society of America B 31, no. 5 (2014): 1096. http://dx.doi.org/10.1364/josab.31.001096.
Full textLi, X. P., L. C. Wang, and L. Zhou. "Tunable Photon Blockade in Coupled Second-order Nonlinear Cavities." International Journal of Theoretical Physics 57, no. 4 (2017): 1039–48. http://dx.doi.org/10.1007/s10773-017-3636-8.
Full textDíaz-Avi nó, Carlos, Mahin Naserpour, and Carlos J. Zapata-Rodríguez. "Tunable Scattering Cancellation of Light Using Anisotropic Cylindrical Cavities." Plasmonics 12, no. 3 (2016): 675–83. http://dx.doi.org/10.1007/s11468-016-0313-3.
Full textZhao, Hongwei, Ran Zhang, Hamid T. Chorsi, et al. "Gate-tunable metafilm absorber based on indium silicon oxide." Nanophotonics 8, no. 10 (2019): 1803–10. http://dx.doi.org/10.1515/nanoph-2019-0190.
Full textRodríguez-Vázquez, Nuria, Rebeca García-Fandiño, Manuel Amorín та Juan R. Granja. "Self-assembling α,γ-cyclic peptides that generate cavities with tunable properties". Chemical Science 7, № 1 (2016): 183–87. http://dx.doi.org/10.1039/c5sc03187g.
Full textSoegiarto, Airon C., Angiolina Comotti, and Michael D. Ward. "Controlled Orientation of Polyconjugated Guest Molecules in Tunable Host Cavities." Journal of the American Chemical Society 132, no. 41 (2010): 14603–16. http://dx.doi.org/10.1021/ja106106d.
Full textDeotare, P. B., L. C. Kogos, I. Bulu, and M. Loncar. "Photonic Crystal Nanobeam Cavities for Tunable Filter and Router Applications." IEEE Journal of Selected Topics in Quantum Electronics 19, no. 2 (2013): 3600210. http://dx.doi.org/10.1109/jstqe.2012.2225828.
Full textHung, Nguyen Dai, P. Plaza, M. Martin, and Y. H. Meyer. "Generation of tunable subpicosecond pulses using low-Q dye cavities." Applied Optics 31, no. 33 (1992): 7046. http://dx.doi.org/10.1364/ao.31.007046.
Full textOyedokun, Titus, Riana Geschke, and Tinus Stander. "A Geometric Study of Tunable Planar Groove Gap Waveguide Cavities." IOP Conference Series: Materials Science and Engineering 321 (March 2018): 012008. http://dx.doi.org/10.1088/1757-899x/321/1/012008.
Full textCui, Jin-Ming, Kun Zhou, Ming-Shu Zhao, et al. "Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings." Applied Physics Letters 112, no. 17 (2018): 171105. http://dx.doi.org/10.1063/1.5024798.
Full textHo, Ya-Lun, Minoru Abasaki, Shichen Yin, Xin Liu, and Jean-Jacques Delaunay. "Fluid-controlled tunable infrared filtering in hollow plasmonic nanofin cavities." Nanotechnology 27, no. 42 (2016): 425202. http://dx.doi.org/10.1088/0957-4484/27/42/425202.
Full textZhao, Ting, Huifu Xiao, Yingtao Li, et al. "Independently tunable double Fano resonances based on waveguide-coupled cavities." Optics Letters 44, no. 12 (2019): 3154. http://dx.doi.org/10.1364/ol.44.003154.
Full textXu, Chenmin, Chong Sheng, Shining Zhu, and Hui Liu. "Enhanced directional quantum emission by tunable topological doubly resonant cavities." Optics Express 29, no. 11 (2021): 16727. http://dx.doi.org/10.1364/oe.425619.
Full textLi, Teng Long, Rui Sheng Liang, Wen Hao Mo, Liang Bing Luo, Ming Jia He, and Yu Ruo Wang. "The Tunable Optofluidics Waveguide Design Based on the Novel Dual Side-Coupled Cavities Plasmonic Structure." Key Engineering Materials 609-610 (April 2014): 648–53. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.648.
Full textLUAN Kun-peng, 栾昆鹏, 于力 YU Li, 沈炎龙 SHEN Yan-long, 黄超 HUANG Chao, and 陶蒙蒙 TAO Meng-meng. "Widely tunable all-solid-state Cr∶LiSAF lasers with external cavities." Optics and Precision Engineering 23, no. 12 (2015): 3316–21. http://dx.doi.org/10.3788/ope.20152312.3316.
Full textZHONG Jie-wen, 钟洁文, 王发强 WANG Fa-qiang, and 叶九林 YE Jiu-lin. "Tunable Plasmonic-induced Transparency Based on Plasmonic Dual Side-coupled Cavities." Acta Sinica Quantum Optica 23, no. 1 (2017): 40–45. http://dx.doi.org/10.3788/jqo20172301.0005.
Full textCustelcean, Radu, and Priscilla Remy. "Selective Crystallization of Urea-Functionalized Capsules with Tunable Anion-Binding Cavities." Crystal Growth & Design 9, no. 4 (2009): 1985–89. http://dx.doi.org/10.1021/cg801299a.
Full textLee, Y., G. Faini, and D. Mailly. "Quantum transport in chaotic and integrable ballistic cavities with tunable shape." Physical Review B 56, no. 15 (1997): 9805–12. http://dx.doi.org/10.1103/physrevb.56.9805.
Full textYum, Honam, Xue Liu, Young Joon Jang, May Eunyeon Kim, and Selim M. Shahriar. "Pulse Delay Via Tunable White Light Cavities Using Fiber-Optic Resonators." Journal of Lightwave Technology 29, no. 18 (2011): 2698–705. http://dx.doi.org/10.1109/jlt.2011.2162090.
Full textKumar, Rajesh, P. Singh, Divya Unnikrishnan, and Girish Kumar. "A tunable waveguide to cavity coupler for high power accelerator cavities." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 664, no. 1 (2012): 203–13. http://dx.doi.org/10.1016/j.nima.2011.10.032.
Full textFuchs, Peter, Jochen Seufert, Johannes Koeth, et al. "Widely tunable quantum cascade lasers with coupled cavities for gas detection." Applied Physics Letters 97, no. 18 (2010): 181111. http://dx.doi.org/10.1063/1.3514247.
Full textYu, Lixian, Caifeng Li, Jingtao Fan, Gang Chen, Tian-Cai Zhang, and Suotang Jia. "Tunable two-axis spin model and spin squeezing in two cavities." Chinese Physics B 25, no. 5 (2016): 050301. http://dx.doi.org/10.1088/1674-1056/25/5/050301.
Full textAdeniran, S. A. "A new technique for absolute temperature compensation of tunable resonant cavities." IEE Proceedings H Microwaves, Antennas and Propagation 132, no. 7 (1985): 471. http://dx.doi.org/10.1049/ip-h-2.1985.0084.
Full textAlboon, Shadi A., and Robert G. Lindquist. "Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities." Optics Express 16, no. 1 (2008): 231. http://dx.doi.org/10.1364/oe.16.000231.
Full textDíaz-Aviñó, Carlos, Mahin Naserpour, and Carlos J. Zapata-Rodríguez. "Correction to: Tunable Scattering Cancellation of Light Using Anisotropic Cylindrical Cavities." Plasmonics 13, no. 6 (2018): 2435. http://dx.doi.org/10.1007/s11468-018-0759-6.
Full textWu, Xin Hui, Jing Li, Chang Hai Qin, and Zhong Hai Zhang. "Bandwidth Balancing Design of Miniaturized Tunable Coaxial Cavity Filter." Applied Mechanics and Materials 40-41 (November 2010): 453–56. http://dx.doi.org/10.4028/www.scientific.net/amm.40-41.453.
Full textXia, Ji, Qifeng Qiao, Guangcan Zhou, Fook Siong Chau, and Guangya Zhou. "Opto-Mechanical Photonic Crystal Cavities for Sensing Application." Applied Sciences 10, no. 20 (2020): 7080. http://dx.doi.org/10.3390/app10207080.
Full textCao, Fengzhao, Shuai Zhang, Junhua Tong, et al. "Effects of Cavity Structure on Tuning Properties of Polymer Lasers in a Liquid Environment." Polymers 11, no. 2 (2019): 329. http://dx.doi.org/10.3390/polym11020329.
Full textAdeniran, S. A. "Erratum: A new technique for absolute temperature compensation of tunable resonant cavities." IEE Proceedings H Microwaves, Antennas and Propagation 133, no. 3 (1986): 174. http://dx.doi.org/10.1049/ip-h-2.1986.0029.
Full textAdeniran, S. A. "Erratum: A new technique for absolute temperature compensation of tunable resonant cavities." IEE Proceedings H Microwaves, Antennas and Propagation 133, no. 3 (1986): 174. http://dx.doi.org/10.1049/ip-h-2.1986.0030.
Full textKim, Kyoung-Ho, Muhammad Sujak, Evan S. H. Kang, and You-Shin No. "Tunable non-Hermiticity in Coupled Photonic Crystal Cavities with Asymmetric Optical Gain." Applied Sciences 10, no. 22 (2020): 8074. http://dx.doi.org/10.3390/app10228074.
Full textChen, Yonghao, Li Chen, Kunhua Wen, Yihua Hu, and Weitao Lin. "Independently tunable Fano resonances in a metal-insulator-metal coupled cavities system." Applied Optics 59, no. 5 (2020): 1484. http://dx.doi.org/10.1364/ao.381381.
Full textLe Floch, J.-M., Y. Fan, M. Aubourg, et al. "Rigorous analysis of highly tunable cylindrical transverse magnetic mode re-entrant cavities." Review of Scientific Instruments 84, no. 12 (2013): 125114. http://dx.doi.org/10.1063/1.4848935.
Full text