Academic literature on the topic 'Tuned-mass dampers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tuned-mass dampers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tuned-mass dampers"

1

Rahman, Mohammad Sabbir, Md Kamrul Hassan, Seongkyu Chang, and Dookie Kim. "Adaptive multiple tuned mass dampers based on modal parameters for earthquake response reduction in multi-story buildings." Advances in Structural Engineering 20, no. 9 (November 24, 2016): 1375–89. http://dx.doi.org/10.1177/1369433216678863.

Full text
Abstract:
The primary objective of this research is to find the effectiveness of an adaptive multiple tuned mass damper distributed along with the story height to control the seismic response of the structure. The seismic performance of a 10-story building was investigated, which proved the efficiency of the adaptive multiple tuned mass damper. Structures with single tuned mass damper and multiple tuned mass dampers were also modeled considering the location of the dampers at the top of the structure, whereas adaptive multiple tuned mass damper of the structure was modeled based on the story height. Selection of the location of the adaptive multiple tuned mass damper along with the story height was dominated by the modal parameters. Participation of modal mass directly controlled the number of the modes to be considered. To set the stage, a comparative study on the displacements and modal energies of the structures under the El-Centro, California, and North-Ridge earthquakes was conducted with and without various types of tuned mass dampers. The result shows a significant capability of the proposed adaptive multiple tuned mass damper as an alternative tool to reduce the earthquake responses of multi-story buildings.
APA, Harvard, Vancouver, ISO, and other styles
2

Gutierrez Soto, Mariantonieta, and Hojjat Adeli. "Tuned Mass Dampers." Archives of Computational Methods in Engineering 20, no. 4 (October 19, 2013): 419–31. http://dx.doi.org/10.1007/s11831-013-9091-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Štěpánek, Jan, and Jiří Máca. "OPTIMIZATION OF TUNED MASS DAMPERS ATTACHED TO DAMPED STRUCTURES - MINIMIZATION OF MAXIMUM DISPLACEMENT AND ACCELERATION." Acta Polytechnica CTU Proceedings 30 (April 22, 2021): 98–103. http://dx.doi.org/10.14311/app.2021.30.0098.

Full text
Abstract:
A tuned mass damper is a device, which can be highly helpful while dealing with dynamic behaviour of structures. Its proper design is conditioned by knowledge of both loading and the structure properties. In many cases, the structure can be represented by single degree of freedom model, which simplifies the design and optimization of tuned mass dampers. Most of studies focus only on minimization of displacement of the main structure under harmonic force load, however, in many cases, different frequency response function would be more appropriate. This paper presents an extension of design formulas for the H∞ optimization of tuned mass dampers for damped structures and various frequency response functions.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Zhihao, Hui Gao, Hao Wang, and Zhengqing Chen. "Development of stiffness-adjustable tuned mass dampers for frequency retuning." Advances in Structural Engineering 22, no. 2 (August 28, 2018): 473–85. http://dx.doi.org/10.1177/1369433218791356.

Full text
Abstract:
Tuned mass damper is an attractive strategy to mitigate the vibration of civil engineering structures. However, the performance of a tuned mass damper may show a significant loss due to the frequency detuning effect. Hence, an inerter-induced negative stiffness (apparent mass effect) and magnetic-force-induced positive/negative stiffness are proposed to integrate a stiffness-adjustable vertical tuned mass damper and pendulum tuned mass damper for frequency retuning, respectively. Based on the established differential equations of motion for a vertical tuned mass damper coupled with an inerter and a pendulum tuned mass damper integrated with a magnetic-force-induced positive-/negative-stiffness device, the frequency retuning principles of a vertical tuned mass damper and a pendulum tuned mass damper are, respectively, demonstrated. The frequency retuning strategies for both the vertical tuned mass damper and the pendulum tuned mass damper are confirmed and clarified by model tests. Furthermore, the performance of a retuned vertical tuned mass damper for mitigating vibration of a linear undamped single-degree-of-freedom primary structure is discussed, and the effects of the amplitudes of the pendulum tuned mass damper on magnetic-force-induced stiffness as well as the frequency of the pendulum tuned mass damper are also investigated. Both theoretical analysis and experimental investigations show that the proposed frequency tuning methodologies of tuned mass dampers are efficient and cost-effective with relatively simple configurations.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Min, Yan Lin Zhang, and Tao Zan. "Performance Optimization and Comparison of TMD, MTMD and DTMD for Machining Chatter Control." Advanced Materials Research 199-200 (February 2011): 1165–70. http://dx.doi.org/10.4028/www.scientific.net/amr.199-200.1165.

Full text
Abstract:
This paper investigates and analyzes the performances of several types of tuned mass damper (TMD) including common single TMD(STMD), multiple tuned mass dampers (MTMD) and dual tuned mass dampers (DTMD) on the machining chatter control. Considering the special nature of the machining stability problem, the optimal design parameters of the dampers are defined as those that minimize the magnitude of the real part of the FRF of the damped machining system. This paper demonstrates the performance of the optimally designed different TMDs for machining stability improvement by calculating the stability diagrams for the turning processes. The calculation results show that a more than 60% improvement in the critical limiting cutting depth can be obtained for the optimally designed MTMD (2 TMDs) compared to the optimally designed STMD, and a more than20% improvement for the optimally designed DTMD compared to the optimally designed MTMD(2 TMDs).
APA, Harvard, Vancouver, ISO, and other styles
6

Khazaei, Mohsen, Reza Vahdani, and Ali Kheyroddin. "Optimal Location of Multiple Tuned Mass Dampers in Regular and Irregular Tall Steel Buildings Plan." Shock and Vibration 2020 (September 16, 2020): 1–20. http://dx.doi.org/10.1155/2020/9072637.

Full text
Abstract:
Tuned mass dampers are one of the most common devices for the passive control of structures subjected to earthquakes. The structure of these dampers consists of three main parameters: mass, damping, and stiffness. Tuned mass dampers reduce the amplitude of the responses affecting on a mode. In most cases, only a single TMD (tuned mass damper) or a few dampers at several points above the building height are installed on the roof of the building, requiring considerable mass and space in some parts of the structure as overhead. It is also more important to predict the elements that will meet the required mass. In this research, the performance of multiple tuned mass dampers (MTMDs) is investigated in L- and U-shaped regular and irregular tall steel buildings with 10 and 20 floors, under the near- and far-field records. Nonlinear time history analysis is also applied to evaluate the multiple tuned mass dampers effects on the seismic responses of the structures. The SAP2000 API and MATLAB genetic algorithm are used to determine the optimal location of the MTMDs in the roof plans of the buildings. The results show the effects of multiple tuned mass dampers in reducing the seismic response of acceleration, displacement, and base shear up to 50, 40, and 40% in average, respectively. The results of determining the optimum location of MTMDs in the models indicate the importance of the symmetry of the dampers relative to the centre of mass of the building.
APA, Harvard, Vancouver, ISO, and other styles
7

LI, CHUNXIANG. "PERFORMANCE OF DUAL-LAYER MULTIPLE TUNED MASS DAMPERS FOR STRUCTURES UNDER GROUND EXCITATIONS." International Journal of Structural Stability and Dynamics 06, no. 04 (December 2006): 541–57. http://dx.doi.org/10.1142/s0219455406002106.

Full text
Abstract:
The dual-layer multiple tuned mass dampers (DL-MTMD) with a uniform distribution of natural frequencies are proposed, which consist of one large tuned mass damper (L-TMD) and an arbitrary number of small tuned mass dampers (S-TMD). The structure is represented by a generalized system corresponding to the specific vibration mode to be controlled. The criterion for assessing the optimum parameters and effectiveness of the DL-MTMD is based on the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of the structure installed with the DL-MTMD. Also considered is the stroke of the DL-MTMD. The proposed DL-MTMD system is demonstrated to show higher effectiveness and robustness to the change in frequency tuning, in comparison to the multiple tuned mass dampers (MTMD) with equal total mass ratios. It is also demonstrated to be more effective than the dual tuned mass dampers (DTMD) with one large and one small tuned mass damper, but they maintain the same level of robustness to the change in frequency tuning. The DL-MTMD system can be easily manufactured as the optimum value for the linking dashpots between the structure and L-TMD is shown to be zero.
APA, Harvard, Vancouver, ISO, and other styles
8

Chawhan, Rechal L., Nikhil H. Pitale, S. S. Solanke, and Mangesh Saiwala. "Use of Tuned Liquid Damper to Control Structural Vibration Structural." IOP Conference Series: Materials Science and Engineering 1197, no. 1 (November 1, 2021): 012053. http://dx.doi.org/10.1088/1757-899x/1197/1/012053.

Full text
Abstract:
Abstract The aim of this paper is to study the tuned liquid damper and it’s effectivness. The tunned liquid dampers are simply tuned mass damper where the liquid (usually water) replaces the mass.Tuned liquid dampers is a water tank placed over the structure which is able to reduce the dynamic structural response subjected to stimulation through sloshing effect. The effectiveness of tuned liquid damper depends upon various parameters. Tuned liquid damper are suitable for high rise building rather than short building. The tuned liquid damper decreases effect of harmonic excitation by Dissipating the energy of excitation through sloshing phenomenon.
APA, Harvard, Vancouver, ISO, and other styles
9

Kopylov, Semen, Zhaobo Chen, and Mohamed AA Abdelkareem. "Back-iron design-based electromagnetic regenerative tuned mass damper." Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 234, no. 3 (June 14, 2020): 607–22. http://dx.doi.org/10.1177/1464419320932350.

Full text
Abstract:
Implementation of tuned mass dampers is the commonly used approach to avoid excessive vibrations in civil engineering. However, due to the absence of the compact dimension, there are still no practical applications of the tuned mass dampers in automotive industry. Meanwhile, recent investigations showed the benefit of utilizing a tuned mass damper in a vehicle suspension in terms of driving comfort and road holding. Thus, the current investigation aimed to explore a novel compact dimension tuned mass damper, which can provide both sufficient vibration mitigation and energy harvesting. This paper presents a prototype of a back-iron-based design of an electromagnetic regenerative tuned mass damper. The mathematical model of the tuned mass damper system was developed and has been validated by the experimental results of the tuned mass damper prototype implemented in a protected mass test-bench. The indicated results concluded that the attenuation performance dramatically deteriorated under random excitations and a reduction in the root-mean-square acceleration of 18% is concluded compared to the case with undamped tuned mass damper. Under harmonic excitations, the designed tuned mass damper prototype is able to reduce the peak acceleration value of the protected structure by 79%. According to the experimental results, the designed tuned mass damper prototype revealed a peak regenerative power of 0.76 W under a harmonic excitation of 8.1 Hz frequency [Formula: see text]m amplitude. Given the simulated random road profiles from C to E, the back-iron electromagnetic tuned mass damper indicated that root-mean-square harvested power from 0.6 to 6.4 W, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmad, Aabas. "Analysis of Load Reduction of Floating Wind Turbines Using Passive Tuned Mass Dampers." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1340–45. http://dx.doi.org/10.22214/ijraset.2021.38179.

Full text
Abstract:
Abstract: An efficient method for restraining the large vibration displacements and loads of offshore floating wind turbines under harsh marine environment is proposed by putting tuned mass dampers in the cabin. A dynamics model for a barge-type offshore floating wind turbine with a fore–aft tuned mass damper is established based on Lagrange’s equations; the nonlinear least squares Leven berg–Marquardt algorithm is employed to identify the parameters of the wind turbine; different parameter optimization methods are adopted to optimize tuned mass damper parameters by considering the standard deviation of the tower top longitudinal displacement as the objective function. Aiming at five typical combined wind and wave load cases under normal running state of the wind turbine, the dynamic responses of the wind turbine with/without tuned mass damper are simulated and the suppression effect of the tuned mass damper is investigated over the wide range of load cases. The results show that when the wind turbine vibrates in the state of damped free vibration, the standard deviation of the tower top longitudinal displacement is decreased approximately 60% in 100 s by the optimized tuned mass damper with the optimum tuned mass damper mass ratio 1.8%. The standard deviation suppression rates of the longitudinal displacements and loads in the tower and blades increase with the tuned mass damper mass ratio when the wind turbine vibrates under the combined wind and wave load cases. When the mass ratio changes from 0.5% to 2%, the maximum suppression rates vary from 20% to 50% correspondingly, which effectively reduce vibration responses of the offshore floating wind turbine. The results of this article preliminarily verify the feasibilities of using a tuned mass damper for restraining vibration of the barge-type offshore floating wind turbine
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Tuned-mass dampers"

1

Ritchey, John Kenneth. "Application of Magneto-Rheological Dampers in Tuned Mass Dampers for Floor Vibration Control." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/35287.

Full text
Abstract:

The purpose of this research is to establish the effectiveness of tuned-mass-dampers (TMD) using semi-active magneto-rheological (MR) dampers to mitigate annoying floor vibrations. Annoying floor vibration is becoming more common in today's building structures since building materials have become stronger and lighter; the advent of computers has resulted in "paperless" offices; and the use of floors for rhythmic activities, such as aerobics and concerts, is more common. Analytical and experimental studies were conducted to provide an understanding of the effects of incorporating the semi-active-TMD as a remedy to annoying floor vibration.

A pendulum tuned mass damper (PTMD) in which the tuning parameters could independently be varied was used. Closed form solutions for the response of the floor using passive dampers were developed. In addition, a numerical integration technique was used to solve the equations of motion where semi-active dampers are utilized. The optimum design parameters of PTMDs using passive and semi-active dampers were found using an optimization routine. Performances of the PTMD in reducing the floor vibration level at the optimum and when subjected to off-tuning of design parameters using passive and semi-active dampers were compared.

To validate the results obtained in the analytical investigation, an experimental study was conducted using an 8 ft x 30 ft laboratory floor and a commercial PTMD. Comparative studies of the effectiveness of the PTMD in reducing floor vibrations using semi-active and passive dampers were conducted.


Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Tang, Ning. "Design of adjustable tuned mass dampers employing nonlinear elements." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/19727/.

Full text
Abstract:
The work focuses on the design of the Tuned Mass Damper (TMD), targeted multi-mode, multi-directional vibrations of mechanical structures occurring over a wide temperature ranges. Extension of the target frequency range is achieved by making the devices adjustable, using components with nonlinear load-deflection behaviour. Two nonlinear components that are new in TMD design are studied, namely elastomeric O-rings and Tangled Metal Wire (TMW) particles. Evaluation of the performance of these devices on a typical engineering structure is carried out, and the feasibility of the proposed devices demonstrated. For the O-ring TMD, analytical models are developed to describe the load- deflection behaviour of the O-ring. An existing model for axial compression is improved while new models are established for shear and rocking deformations. Validation of the models is carried out using a specifically designed vibration test. Numerical models, aiming to estimate the elasticity of the O-rings with irregular cross-sectional shape, are developed and validated by comparison with the experimental results. The TMW particles seeks to address high temperature applications. The strong compression-dependent stiffness of these particles provides the basis for an adjustable TMD. Although there is some variation in the stiffness and damping for different collections of particles with similar physical properties, uniformity in- creases after several test runs. According to the assumptions of the equivalence of the TMW materials and the hyperelastic solid, a semi-empirical analytical model is developed and validated using experimental results. A novel design optimisation algorithm, based on the complex power approach, developed to provide an alternative route for the TMD involving nonlinear elements. The proposed route, involving the use of the a numerical, evolutionary search method, is finally applied to the design of a nonlinear TMD.
APA, Harvard, Vancouver, ISO, and other styles
3

Alhujaili, Fahad Abdulrahman. "Semi-Active Control of Air-Suspended Tuned Mass Dampers." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1354480214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Almeida, Guilherme Mesquita de. "Aplicação de tuned-mass dampers para controle de vibrações em lajes." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3144/tde-02122016-085411/.

Full text
Abstract:
Esta dissertação propõe uma solução padronizada de aplicação de Tuned-Mass Damper (TMD) para controle de vibrações em lajes baseada na análise das características de carregamentos associados à utilização humana e nas características estruturais mais comuns à engenharia contemporânea. De modo a simplificar sua aplicação técnica, a sintonização é proposta por meio da escolha de componentes pré-determinados para a montagem do TMD e pela distribuição e posicionamento dos mecanismos. A eficácia do sistema é então verificada em um estudo de caso, usando um modelo de elementos finitos de uma laje, antes e depois da aplicação dos mecanismos.
This thesis proposes a standardized solution for the application of Tuned-Mass Dampers to the control of floor vibrations based on the characteristics of the acting loads associated to human usage and the characteristics of the most common structures of the contemporary engineering practice. In order to simplify its usage by the technical community, the tuning is proposed through the selection of pre-determined components for the assembly of the TMD and the choice of disposition and spacing of the mechanisms. The system efficacy is then verified in a computational case study, by means of a finite-element model of a floor, before and after the application of the mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
5

Rottmann, Cheryl E. "The use of tuned mass dampers to control annoying floor vibrations." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-09182008-063455/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liedes, T. (Toni). "Improving the performance of the semi-active tuned mass damper." Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514291258.

Full text
Abstract:
Abstract The tuned mass damper (TMD) is a well-known and approved concept for resonance vibration control. However, as a fully passive device, the traditional TMD has a limited operating band and rather poor robustness against parameter variations. To overcome these weaknesses, a semi-active control can be applied to TMD. As a result, a more effective and flexible device can be attained. In theory, the application of the semi-active scheme is straightforward and the gain in performance is considerable. In practice, however, the non-idealities associated with actuators and control systems degrade the performance. In this thesis, the dynamic behaviour of a semi-active TMD with groundhook control was studied both numerically and experimentally. The semi-active scheme studied is based on groundhook control and a dry-friction damper is used as an actuator in rapid damping modulation. The performance of the semi-active TMD was evaluated in terms of two performance indices which are calculated from the normalised displacement response in the frequency domain. Also, parametric studies were conducted to find out how the different parameters influence the system performance. It is shown that the non-idealities in the semi-active damper have a significant influence on the performance of a groundhook controlled semi-active TMD. On the basis of simulations, a new parameterised semi-active control method was developed. The method is treated as a generalised groundhook control, and it involves a parameter through which the dynamic behaviour of a semi-active TMD can be affected both online and offline. The new method does not require an actuator model. The method developed opens the way for effective use of a non-ideal semi-active actuator, thus ensuring the good performance of the semi-active TMD. Also, the semi-active TMD’s sensitivity for certain parameter variation decreases considerably.
APA, Harvard, Vancouver, ISO, and other styles
7

Chinien, Lomadeven Viken. "Design of multiple tuned mass dampers for mitigation of wind induced vibrations." Thesis, Imperial College London, 2000. http://hdl.handle.net/10044/1/11536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lindh, Cory W. "Dynamic range implications for the effectiveness of semi-active tuned mass dampers." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57884.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 159-164).
The response of tall buildings subjected to dynamic wind loads has been widely studied. For excitations approaching the resonant frequencies of the structure, ensuring serviceability is a significant concern. One traditional solution is the implementation of a tuned mass damper (TMD), which acts as a passive damping device in the region of the tuned frequency. However, TMDs exhibit a limited bandwidth and often require a significant mass. Active systems, such as the active mass driver, have been utilized to improve the effectiveness of the TMD concept, but these systems require significant power and bring the inherent risk of instability. Hybrid semi-active schemes with variable damping devices have been proposed. They are stable, require low power, and are controllable, thus providing a broader range of applicability. The concept of a semi-active tuned mass damper (STMD) has been investigated, but the influence of the dynamic range of the semi-active damping device has not been documented. This analysis assesses the effectiveness of STMD systems using a variable-orifice damper and a magnetorheological damper with varying dynamic ranges. Results demonstrate a performance dependence on the dynamic range and also elucidate the superiority of non-linear damping devices. It is shown that the prescribed TMD mass may be reduced by a factor of two when semi-active control is implemented, thereby making the STMD an attractive and feasible option when space and weight concerns govern design.
by Cory W. Lindh.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
9

Verdirame, Justin Matthew 1978. "Design of multi-degree-of-freedom tuned-mass dampers using perturbation techniques." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/89918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pallucco, Eleonora. "Controllo della risposta dinamica di un telaio mediante “Pendulum Tuned Mass Dampers - PTMD”." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
In questa tesi, inizialmente, sono stati affrontati questioni relative alla formulazione matematica dei pendoli: in particolar modo allo sviluppo dell’analisi matriciale che concerne i vari casi considerati sia in via teorica, che in quella pratica. Studiando i vari casi in via teorica, si è visto che l’applicazione del PTMD migliora notevolmente la risposta dei telai; mentre in via pratica, essendoci molte più incertezze ed irregolarità nei vari materiali e nei collegamenti tra di essi, in alcuni casi si riesce a vedere il miglioramento delle risposte solo attraverso gli andamenti degli accelerometri, e quindi solo attraverso PC; altri anche visivamente, come per il caso del telaio ad 1GdL alto 0,60 m.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Tuned-mass dampers"

1

Bekdaş, Gebrail, and Sinan Melih Nigdeli, eds. Optimization of Tuned Mass Dampers. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wielgos, Piotr. Ocena skuteczności działania wielokrotnych, strojonych tłumików masowych w konstrukcjach budowlanych. Lublin: Politechnika Lubelska, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gebrail Bekdaş and Sinan Melih Nigdeli. Optimization of Tuned Mass Dampers: Using Active and Passive Control. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guo, Chuan, and Albert C. J. Luo. Nonlinear Vibration Reduction: An Electromagnetically Tuned Mass Damper System. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Tuned-mass dampers"

1

Cimellaro, Gian Paolo, and Sebastiano Marasco. "Tuned-Mass Dampers." In Introduction to Dynamics of Structures and Earthquake Engineering, 421–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72541-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Altay, Okyay. "Tuned Mass Dampers." In Vibration Mitigation Systems in Structural Engineering, 119–42. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315122243-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Djerouni, Salah, Mahdi Abdeddaim, Said Elias, Dario De Domenico, and Rajesh Rupakhety. "Optimal Seismic Response Control of Adjacent Buildings Coupled with a Double Mass Tuned Damper Inerter." In Optimization of Tuned Mass Dampers, 97–117. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kayabekir, Aylin Ece, Gebrail Bekdaş, and Sinan Melih Nigdeli. "Optimum Tuning of Active Mass Dampers via Metaheuristics." In Optimization of Tuned Mass Dampers, 155–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yücel, Melda, Gebrail Bekdaş, and Sinan Melih Nigdeli. "Metaheuristics-Based Optimization of TMD Parameters in Time History Domain." In Optimization of Tuned Mass Dampers, 55–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mehrkian, Behnam, and Okyay Altay. "Semi-active Tuned Liquid Column Dampers with Variable Natural Frequency." In Optimization of Tuned Mass Dampers, 131–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bekdaş, Gebrail, Sinan Melih Nigdeli, and Aylin Ece Kayabekir. "Introduction and Overview: Structural Control and Tuned Mass Dampers." In Optimization of Tuned Mass Dampers, 1–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ulusoy, Serdar, Sinan Melih Nigdeli, and Gebrail Bekdaş. "Introduction and Review on Active Structural Control." In Optimization of Tuned Mass Dampers, 41–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yücel, Melda, Sinan Melih Nigdeli, and Gebrail Bekdaş. "Machine Learning-Based Model for Optimum Design of TMDs by Using Artificial Neural Networks." In Optimization of Tuned Mass Dampers, 175–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ocak, Ayla, Gebrail Bekdaş, and Sinan Melih Nigdeli. "Optimization of Tuned Liquid Dampers for Structures with Metaheuristic Algorithms." In Optimization of Tuned Mass Dampers, 119–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98343-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Tuned-mass dampers"

1

Masaki, Nobuo, and Hisashi Hirata. "Vibration Control Performance of Damping Coupled Tuned Mass Dampers." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2940.

Full text
Abstract:
Recently tuned mass dampers have been installed on three-story prefabricated houses for reducing of traffic-induced vibration and improving living comfort. This tuned mass damper consists of a mass unit, spring units and laminated rubber bearings. The mass is supported by four laminated rubber bearings, and spring units are used for adjusting the natural frequency of the tuned mass damper to the optimal value. Vibration control performance of this type of tuned mass dampers is deteriorated when the natural frequency of the house is changed. To solve this problem, the authors have developed a damping coupled tuned mass damper. In this type of tuned mass damper, two mass units having slightly different natural frequencies are coupled by using a damping unit. In this paper, mechanism and vibration control performance of the damping coupled tuned mass damper are described.
APA, Harvard, Vancouver, ISO, and other styles
2

Chandrasekaran, Srinivasan, Deepak Kumar, and Ranjani Ramanathan. "Response Control of TLP Using Tuned Mass Dampers." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23597.

Full text
Abstract:
Offshore tension leg platform (TLP) is a compliant type offshore structure where the tendons are deployed under initial pretension to counteract the excessive buoyancy. TLPs show large amplitude response under environmental loads due to their compliancy, which poses threat under extreme loads. Use of passive dampers like Tuned Mass Damper (TMD) is common to control such large amplitude motion, however their deployment in offshore structures is relatively new. Response control of a scaled model of TLP is attempted using tuned mass damper of pendulum type under regular waves. Based on the experimental studies carried out, it is seen that there is a significant reduction in the surge response under the folded pendulum type damper. Results also show that there is a reduction in the heave response due to the control envisaged in the surge motion. The discussed method of response control is one of the effective methods of retrofitting offshore platforms whose operability at rough sea states is a serious concern.
APA, Harvard, Vancouver, ISO, and other styles
3

Marano, Giuseppe Carlo. "ENERGY BASED OPTIMUM DESIGN OF TUNED MASS DAMPERS." In 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120115.3641.1767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Simonian, Stepan, and Sarah Brennan. "Particle Tuned Mass Dampers: Design, Test, and Modeling." In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-2325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Myszka, David H. "Using Tuned Mass Dampers to Silence a Coordinate Measuring Machine." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42306.

Full text
Abstract:
Nearly every manufacturing operation relies on servo-controlled automation and inspection machines. The design of these machines requires close attention to the relationships of the mechanical system with the electronic control system. Often, the attributes of one component can augment the weaknesses of another, and vice versa. For example, linear motions are traditionally produced with a rotary motor and ball screw. Recently, linear motors have gained popularity because of their numerous advantages. However, the servo-controls can, more easily, excite resonant frequencies in the machine structure. Therefore, controlling the machine at various speeds can produce excessive structural vibrations as different modes are excited. Thus, improvement in one component causes difficulties with another. An efficient solution is a tuned mass damper (TMD). This is a simple, modular device that consists of a weight, mounted on a spring along with a viscous energy absorber. The tuned mass damper is placed where the undesired vibratory motion is greatest. The size of the mass, spring and damper are adjusted, or tuned, so they oscillate out-of-phase with the structure and reduce the amplitude of vibration. This paper will review the theory of tuned dynamic dampers, and illustrate an application of integrating them into the design of a coordinate measuring machine.
APA, Harvard, Vancouver, ISO, and other styles
6

Al-Rumaih, Wail S., and Ahmad R. Kashani. "A Viscoelastic Tuned Mass Damper for Vibration Treatment of Large Structures." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69485.

Full text
Abstract:
Abstract Viscoelastic (VE) tuned mass dampers (TMDs) using commercially available, small thickness, VE material have been used extensively in adding targeted damping to light structures. The most common approach for realizing stiffness and damping in these tuned devices has been applying VE material to strips of elastic material (mainly metal, e.g. steel) in an unconstrained or constrained layer fashion and using such assemblies, which can be viewed as a damped leaf-springs, for the suspension element of the tuned mass damper. In this work, the suitability of tuned mass dampers with visco-elastically damped leaf-spring suspension for treating large, massive civil engineering structures, more specifically floor systems, was studied numerically and experimentally. The effectiveness of this tuned mass damper configuration turned out to be disappointing. In parallel to the above-mentioned study, an alternative VE suspension was devised by stacking a number of 25 mm (1 inch) thick VE rings interlaced with the same number of metal constraining ring layers. By changing the number of these rings, different stiffness’s are realized and thus different tuning frequencies are achieved. The material properties of the VE polymer used in both studies are defined in terms of Prony series parameters. Viewing the Prony series parameters as optimization variables, they are recovered by minimizing the mean squared error between the dynamic material properties predicted by the Prony series parameters and the frequency-dependent dynamic material properties provided by the manufacturer. Using the material properties of the VE material, the dynamic finite element model of a 100 lb TMD was constructed and its tuned damping effectiveness demonstrated, numerically. The 100 lb TMD was also built and used to a) verify the numerical model and b) experimentally demonstrate the performance of the TMD.
APA, Harvard, Vancouver, ISO, and other styles
7

King, Melvin E., and Guido Sandri. "Dynamics of Distributed Impact Dampers." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-3922.

Full text
Abstract:
Abstract In this work, the dynamics of spatially distributed impact dampers are investigated. Typical impact damper configurations consist of a single, rigid mass which moves freely within a cavity that is attached to a lightly damped structure. By tuning the damper’s mass and the cavity’s length (gap-size), the maximum displacement of the structure may be significantly reduced due to the resulting intermittent collisions. Several modifications to the classical impact damper design have been considered in the literature, including (i) multiple-unit dampers, and (ii) granular impact dampers. Both designs have been found to effectively attenuate resonant responses, while simultaneously reducing the severe impact loads, accelerations and noise levels associated with a single-unit damper. An extension of the multiple-unit damper configuration is considered in the present work. The configuration under consideration (referred to as a distributed impact damper) incorporates a number of non-identical single-unit dampers. Whereas multiple-unit dampers composed of identical elements may be tuned to a specified resonant frequency, the proposed distributed impact damper is expected to provide significant attenuation over broad frequency bands. The present work focuses on developing analytical tools with which to study the dynamics of distributed impact dampers. In this regard, methods from non-equilibrium statistical mechanics, including correlation hierarchy, will be used to develop statistical models of the distributed impact damper. Successful completion of this work is expected to provide significant insight into the dynamics of distributed impact dampers, leading to the future development of novel broad-band damping and shock isolation designs.
APA, Harvard, Vancouver, ISO, and other styles
8

Zuo, Lei. "Characteristics and Optimization of Series Multiple Tuned-Mass Dampers." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35810.

Full text
Abstract:
Tuned-mass damper (TMD), or dynamic vibration absorber (DVA), is a very practical and effective device for vibration suppression. Various types of tuned-mass dampers have been proposed in literature, including the classic TMD, (parallel) multiple TMDs, multi-degree-of-freedom (DOF) TMD, and three-element TMD. In this paper we study the characteristics and optimization of a new type of TMD system, in which multiple absorbers are connected to the primary system in series. Structured H2 and H∞ control methods are adopted to optimize the parameters of spring stiffness and damping coefficients for random and harmonic vibration. It is found that series multiple TMDs are more effective and robust than all the other types of TMDs of the same mass ratio. The series two TMDs of total mass ratio 5% can appear to have 31%–66% more mass than the classical TMD, and it can perform better than parallel ten TMDs of the same total mass ratio. The series TMDs are also less sensitive to the parameter changes of the primary system than other TMD(s). Unlike the parallel multiple TMDs, the optimal mass distribution among absorbers in series TMDs is far from the case of equal masses, but instead the first absorber mass is much larger than the second one. Similar to the two-DOF TMD, the optimal series two TMDs also have zero damping in one of its two connections and further increased effectiveness can be obtained if negative dashpot is allowed.
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Xiudong, and Lei Zuo. "Passive, active, and semi-active series tuned mass dampers." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Mehrdad N. Ghasemi-Nejhad. SPIE, 2010. http://dx.doi.org/10.1117/12.847830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Verdirame, Jusin M., Samir A. Nayfeh, and Lei Zuo. "Design of multi-degree-of-freedom tuned-mass dampers." In SPIE's 9th Annual International Symposium on Smart Structures and Materials, edited by Gregory S. Agnes. SPIE, 2002. http://dx.doi.org/10.1117/12.472646.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Tuned-mass dampers"

1

Sadek, Fahim, Bijan Mohraz, Andrew W. Taylor, and Riley M. Chung. A method of estimating the parameters of tuned mass dampers for seismic application. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography