To see the other types of publications on this topic, follow the link: Tungsten Disulfide.

Journal articles on the topic 'Tungsten Disulfide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tungsten Disulfide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Irtegov, Yuriy, Vladimir An, Ksenia Machekhina, and Nikolay Lemachko. "Two-Step Synthesis of Tungsten and Molybdenum Disulfides." Key Engineering Materials 685 (February 2016): 511–15. http://dx.doi.org/10.4028/www.scientific.net/kem.685.511.

Full text
Abstract:
Efficient two-step technique of tungsten and molybdenum disulfides obtaining from metal nanopowders produced by EEW and elementary sulphur is described. Tungsten and molybdenum nanopowders surface area dependence on wire length is studied. Features of metal and sulphur combustion process are discussed. It is determined sulphur excess in reagents 15 wt.% results in mono-phase metal disulfide formation with small free sulphur concentration in reaction products.
APA, Harvard, Vancouver, ISO, and other styles
2

Irtegov, Yuriy, Vladimir An, Ksenia Machekhina, and Nikolay Lemachko. "Influence of Copper Nanoparticles on Tribological Properties of Nanolamellar Tungsten Disulfide." Key Engineering Materials 712 (September 2016): 133–36. http://dx.doi.org/10.4028/www.scientific.net/kem.712.133.

Full text
Abstract:
Tribological properties of a composite mixture based on copper nanoparticles and nanolamellar tungsten disulfide powder have been studied. SEM of copper nanoparticles produced by electrical explosion of wires was analyzed. The tribological tests of pure tungsten disulfide and composite WS2-Cu lubricant are performed. Possible mechanism of copper influence to tribological properties of tungsten disulfide was discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Peng, Ya-Kang, Zi-Yu Cao, Liu-Cheng Chen, Ning Dai, Yan Sun, and Xiao-Jia Chen. "Phonon Anharmonicity of Tungsten Disulfide." Journal of Physical Chemistry C 123, no. 41 (September 26, 2019): 25509–14. http://dx.doi.org/10.1021/acs.jpcc.9b07553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

An, Vladimir, Yuri Irtegov, and Charles de Izarra. "Study of Tribological Properties of Nanolamellar WS2and MoS2as Additives to Lubricants." Journal of Nanomaterials 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/865839.

Full text
Abstract:
This work was aimed at studying the tribological properties of nanolamellar tungsten and molybdenum disulfides produced from nanosized W and Mo nanopowders by self-propagating high-temperature synthesis. The prepared WS2and MoS2powders were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential thermal analysis (DTA). For tribological tests, oil-based lubricants added with nanolamellar tungsten and molybdenum disulfides were prepared. The tribological tests show that the friction coefficient of the nanolamellar powders is lower than that of commercial powder(μmin=0.024and 0.064, resp.). It is also found that the oil-based lubricants with nanolamellar disulfide additives display higher antifriction and antiwear properties compared to commercial powder.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xiao, Jing Liu, Xin Gong, Taiping Qing, Peng Zhang, and Bo Feng. "Synthesis of fluorescent tungsten disulfide by nitrogen atom doping and its application for mercury(ii) detection." Journal of Materials Chemistry C 7, no. 14 (2019): 4096–101. http://dx.doi.org/10.1039/c8tc06233a.

Full text
Abstract:
A facile and eco-friendly approach for synthesizing fluorescent tungsten disulfide nanosheets was developed via nitrogen atom doping using melamine as the nitrogen source. The applicability of this ultraviolet emissive tungsten disulfide as an optical nano probe for mercury(ii) detection was testified.
APA, Harvard, Vancouver, ISO, and other styles
6

Ionescu, Robert, Isaac Ruiz, Zach Favors, Brennan Campbell, Mahesh R. Neupane, Darshana Wickramaratne, Kazi Ahmed, et al. "Two step growth phenomena of molybdenum disulfide–tungsten disulfide heterostructures." Chemical Communications 51, no. 56 (2015): 11213–16. http://dx.doi.org/10.1039/c5cc02837j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He, Zhengyu, Wenshuo Xu, Yingqiu Zhou, Xiaochen Wang, Yuewen Sheng, Youmin Rong, Shaoqiang Guo, Junying Zhang, Jason M. Smith, and Jamie H. Warner. "Biexciton Formation in Bilayer Tungsten Disulfide." ACS Nano 10, no. 2 (January 13, 2016): 2176–83. http://dx.doi.org/10.1021/acsnano.5b06678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pisoni, Andrea, Jacim Jacimovic, Richard Gaál, Bálint Náfrádi, Helmuth Berger, Zsolt Révay, and László Forró. "Anisotropic transport properties of tungsten disulfide." Scripta Materialia 114 (March 2016): 48–50. http://dx.doi.org/10.1016/j.scriptamat.2015.11.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, G. X., Steve Bewlay, Jane Yao, H. K. Liu, and S. X. Dou. "Tungsten Disulfide Nanotubes for Lithium Storage." Electrochemical and Solid-State Letters 7, no. 10 (2004): A321. http://dx.doi.org/10.1149/1.1788591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mao, Xingze, Yan Xu, Qixin Xue, Weixiao Wang, and Daqiang Gao. "Ferromagnetism in exfoliated tungsten disulfide nanosheets." Nanoscale Research Letters 8, no. 1 (2013): 430. http://dx.doi.org/10.1186/1556-276x-8-430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tenne, Reshef, Lev Margulis, and Gary Hodes. "Fullerene-like nanocrystals of tungsten disulfide." Advanced Materials 5, no. 5 (May 1993): 386–88. http://dx.doi.org/10.1002/adma.19930050513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

De Adhikari, Amrita, Nitzan Shauloff, Yury Turkulets, Ilan Shalish, and Raz Jelinek. "Tungsten‐Disulfide/Polyaniline High Frequency Supercapacitors." Advanced Electronic Materials 7, no. 6 (May 9, 2021): 2100025. http://dx.doi.org/10.1002/aelm.202100025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mutlu, Zafer, Darshana Wickramaratne, Serol Turkyilmaz, Hamed H. Bay, Zachary J. Favors, Mihri Ozkan, Roger K. Lake, and Cengiz S. Ozkan. "Two-Dimensional Layered Semiconductor Tungsten Disulfide and Molybdenum-Tungsten Disulfide: Synthesis, Materials Properties and Electronic Structure." Journal of Nanoscience and Nanotechnology 16, no. 8 (August 1, 2016): 8419–23. http://dx.doi.org/10.1166/jnn.2016.12346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Li, P. G., M. Lei, X. F. Wang, H. L. Tang, and W. H. Tang. "Thermal conversion of tungsten oxide nanorods to tungsten disulfide nanoflakes." Journal of Alloys and Compounds 474, no. 1-2 (April 2009): 463–67. http://dx.doi.org/10.1016/j.jallcom.2008.06.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sakthivel, Rajalakshmi, Muthaiah Annalakshmi, Shen-Ming Chen, and Subbiramaniyan Kubendhiran. "Synergistic activity of binary metal sulphide WS2–RuS2 nanospheres for the electrochemical detection of the antipsychotic drug promazine." New Journal of Chemistry 44, no. 11 (2020): 4621–30. http://dx.doi.org/10.1039/d0nj00096e.

Full text
Abstract:
Schematic presentation for the synthesis of tungsten disulfide–ruthenium disulfide (WS2–RuS2) nanospheres and application for the electrochemical determination of antipsychotic drug promazine.
APA, Harvard, Vancouver, ISO, and other styles
16

Lv, Yanfei, Feng Huang, Luxi Zhang, Jiaxin Weng, Shichao Zhao, and Zhenguo Ji. "Preparation and Photoluminescence of Tungsten Disulfide Monolayer." Coatings 8, no. 6 (May 30, 2018): 205. http://dx.doi.org/10.3390/coatings8060205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Levin, Tzuriel, Hagit Sade, Rina Ben-Shabbat Binyamini, Maayan Pour, Iftach Nachman, and Jean-Paul Lellouche. "Tungsten disulfide-based nanocomposites for photothermal therapy." Beilstein Journal of Nanotechnology 10 (April 2, 2019): 811–22. http://dx.doi.org/10.3762/bjnano.10.81.

Full text
Abstract:
Nanostructures of transition-metal dichalcogenides (TMDC) have raised scientific interest in the last few decades. Tungsten disulfide (WS2) nanotubes and nanoparticles are among the most extensively studied members in this group, and are used for, e.g., polymer reinforcement, lubrication and electronic devices. Their biocompatibility and low toxicity make them suitable for medical and biological applications. One potential application is photothermal therapy (PTT), a method for the targeted treatment of cancer, in which a light-responsive material is irradiated with a laser in the near-infrared range. In the current article we present WS2 nanotubes functionalized with previously reported ceric ammonium nitrate–maghemite (CAN-mag) nanoparticles, used for PTT. Functionalization of the nanotubes with CAN-mag nanoparticles resulted in a magnetic nanocomposite. When tested in vitro with two types of cancer cells, the functionalized nanotubes showed a better PTT activity compared to non-functionalized nanotubes, as well as reduced aggregation and the ability to add a second-step functionality. This ability is demonstrated here with two polymers grafted onto the nanocomposite surface, and other functionalities could be additional cancer therapy agents for achieving increased therapeutic activity.
APA, Harvard, Vancouver, ISO, and other styles
18

Sedova, A., G. Bar, O. Goldbart, R. Ron, B. Achrai, I. Kaplan-Ashiri, V. Brumfeld, et al. "Reinforcing silica aerogels with tungsten disulfide nanotubes." Journal of Supercritical Fluids 106 (November 2015): 9–15. http://dx.doi.org/10.1016/j.supflu.2015.07.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Whitby, Raymond L. D., Wen Kuang Hsu, Peter K. Fearon, Norman C. Billingham, Isabelle Maurin, Harold W. Kroto, David R. M. Walton, et al. "Multiwalled Carbon Nanotubes Coated with Tungsten Disulfide." Chemistry of Materials 14, no. 5 (May 2002): 2209–17. http://dx.doi.org/10.1021/cm011282k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Goldbart, Ohad, Sidney R. Cohen, Ifat Kaplan-Ashiri, Polina Glazyrina, H. Daniel Wagner, Andrey Enyashin, and Reshef Tenne. "Diameter-dependent wetting of tungsten disulfide nanotubes." Proceedings of the National Academy of Sciences 113, no. 48 (November 16, 2016): 13624–29. http://dx.doi.org/10.1073/pnas.1607202113.

Full text
Abstract:
The simple process of a liquid wetting a solid surface is controlled by a plethora of factors—surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem.
APA, Harvard, Vancouver, ISO, and other styles
21

Miremadi, B. K., and S. R. Morrison. "The intercalation and exfoliation of tungsten disulfide." Journal of Applied Physics 63, no. 10 (May 15, 1988): 4970–74. http://dx.doi.org/10.1063/1.340441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Johnson-Groh, Mara. "Tungsten disulfide nanotubes demonstrate useful luminescent behavior." Scilight 2020, no. 43 (October 23, 2020): 431103. http://dx.doi.org/10.1063/10.0002409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yan, Peiguang, Hao Chen, Jinde Yin, Zihan Xu, Jiarong Li, Zike Jiang, Wenfei Zhang, et al. "Large-area tungsten disulfide for ultrafast photonics." Nanoscale 9, no. 5 (2017): 1871–77. http://dx.doi.org/10.1039/c6nr09183k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Risdon, T. J. "Tungsten Disulfide, A Unique High-Temperature Lubricant." JOM 38, no. 1 (January 1986): 58–59. http://dx.doi.org/10.1007/bf03257961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Schutte, W. J., J. L. De Boer, and F. Jellinek. "Crystal structures of tungsten disulfide and diselenide." Journal of Solid State Chemistry 70, no. 2 (October 1987): 207–9. http://dx.doi.org/10.1016/0022-4596(87)90057-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Xu, Guangxin Duan, Weifeng Li, Zhufa Zhou, and Ruhong Zhou. "Membrane destruction-mediated antibacterial activity of tungsten disulfide (WS2)." RSC Advances 7, no. 60 (2017): 37873–80. http://dx.doi.org/10.1039/c7ra06442j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Palomar, Quentin, Chantal Gondran, Jean-Paul Lellouche, Serge Cosnier, and Michael Holzinger. "Functionalized tungsten disulfide nanotubes for dopamine and catechol detection in a tyrosinase-based amperometric biosensor design." Journal of Materials Chemistry B 8, no. 16 (2020): 3566–73. http://dx.doi.org/10.1039/c9tb01926j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yin, Wenxu, Xin Liu, Xiaoyu Zhang, Xupeng Gao, Vicki L. Colvin, Yu Zhang, and William W. Yu. "Synthesis of Tungsten Disulfide and Molybdenum Disulfide Quantum Dots and Their Applications." Chemistry of Materials 32, no. 11 (May 12, 2020): 4409–24. http://dx.doi.org/10.1021/acs.chemmater.0c01441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yao, Huizhen, Lai Liu, Zhuo Wang, Henan Li, Longlong Chen, Mei Er Pam, Weigang Chen, Hui Ying Yang, Wenjing Zhang, and Yumeng Shi. "Significant photoluminescence enhancement in WS2 monolayers through Na2S treatment." Nanoscale 10, no. 13 (2018): 6105–12. http://dx.doi.org/10.1039/c8nr00530c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Vasilev, A. P., T. S. Struchkova, and A. G. Alekseev. "Development of Antifriction Materials Based on Polytetrafluoroethylene with Carbon Fibers and Tungsten Disulfide." Materials Science Forum 992 (May 2020): 745–50. http://dx.doi.org/10.4028/www.scientific.net/msf.992.745.

Full text
Abstract:
This paper presents the results from the investigation of effect the carbon fibers with tungsten disulfide on the mechanical and tribological properties of PTFE. Is carried out a comparison of mechanical and tribological properties of polymer composites PTFE-based with carbon fibers and PTFE with complex filler (carbon fibers with tungsten disulfide). It is shown that at a content of 8 wt.% CF+1 wt.% WS2 in PTFE, wear resistance increases significantly while maintaining the tensile strength, relative elongation at break and low coefficient of friction at the level of initial PTFE. The results of X-ray analysis and investigation of SEM supramolecular structure and friction surfaces of PTFE and polymer composites are presented. It is shown that the degree of crystallinity of polymer composites increases in comparison with the initial PTFE. The images of scanning electron microscope reveal that particles of tungsten disulfide concentrating on the friction surface is likely responsible to a reduction in the coefficient of friction and increase the wear resistance of PTFE-based polymer composites with complex fillers.
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, X. H., J. Q. Ning, Z. C. Su, C. C. Zheng, B. R. Zhu, L. Xie, H. S. Wu, and S. J. Xu. "Photoinduced doping and photoluminescence signature in an exfoliated WS2 monolayer semiconductor." RSC Advances 6, no. 33 (2016): 27677–81. http://dx.doi.org/10.1039/c6ra01836j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ji, Liang, Hongyu Cao, Wensi Xing, Shuaicheng Liu, Qian Deng, and Shengping Shen. "Facilitating electrocatalytic hydrogen evolution via multifunctional tungsten@tungsten disulfide core–shell nanospheres." Journal of Materials Chemistry A 9, no. 14 (2021): 9272–80. http://dx.doi.org/10.1039/d1ta01094h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Hanyu, Jeremy R. Dunklin, Obadiah G. Reid, Seok Joon Yun, Sanjini U. Nanayakkara, Young Hee Lee, Jeffrey L. Blackburn, and Elisa M. Miller. "Disentangling oxygen and water vapor effects on optoelectronic properties of monolayer tungsten disulfide." Nanoscale 12, no. 15 (2020): 8344–54. http://dx.doi.org/10.1039/c9nr09326e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Khalil, Adnan, Qin Liu, Qun He, Ting Xiang, Daobin Liu, Changda Wang, Qi Fang, and Li Song. "Metallic 1T-WS2 nanoribbons as highly conductive electrodes for supercapacitors." RSC Advances 6, no. 54 (2016): 48788–91. http://dx.doi.org/10.1039/c6ra08975e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shuai, Hong-Lei, Ke-Jing Huang, and Ying-Xu Chen. "A layered tungsten disulfide/acetylene black composite based DNA biosensing platform coupled with hybridization chain reaction for signal amplification." Journal of Materials Chemistry B 4, no. 6 (2016): 1186–96. http://dx.doi.org/10.1039/c5tb02214b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wenelska, K., K. Maślana, and E. Mijowska. "Study on the flammability, thermal stability and diffusivity of polyethylene nanocomposites containing few layered tungsten disulfide (WS2) functionalized with metal oxides." RSC Advances 8, no. 23 (2018): 12999–3007. http://dx.doi.org/10.1039/c8ra01527a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xin, Zheng, Lang Zeng, Yijiao Wang, Kangliang Wei, Gang Du, Jinfeng Kang, and Xiaoyan Liu. "Strain affected electronic properties of bilayer tungsten disulfide." Japanese Journal of Applied Physics 53, no. 4S (January 1, 2014): 04EN06. http://dx.doi.org/10.7567/jjap.53.04en06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sun, Shibin, Zhenjiang Li, and Xueting Chang. "Synthesis and structural characterization of tungsten disulfide nanomaterials." Materials Letters 65, no. 19-20 (October 2011): 3164–66. http://dx.doi.org/10.1016/j.matlet.2011.06.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Prasad, S. V., N. T. McDevitt, and J. S. Zabinski. "Tribology of tungsten disulfide films in humid environments:." Wear 230, no. 1 (May 1999): 24–34. http://dx.doi.org/10.1016/s0043-1648(99)00082-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Canton-Vitoria, Ruben, Sebastian Nufer, Xiaoyang Che, Yuman Sayed-Ahmad-Baraza, Raul Arenal, Carla Bittencourt, Adam Brunton, Alan B. Dalton, Christopher P. Ewels, and Nikos Tagmatarchis. "Pyrene-functionalized tungsten disulfide as stable resistive photosensor." Materials Advances 1, no. 7 (2020): 2459–66. http://dx.doi.org/10.1039/d0ma00429d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Ruding, Jingze Bao, Yilong Pan, and Chuan-Fu Sun. "Highly reversible potassium-ion intercalation in tungsten disulfide." Chemical Science 10, no. 9 (2019): 2604–12. http://dx.doi.org/10.1039/c8sc04350g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Y. J., T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J. H. Smet, and Y. Iwasa. "Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes." Nature 570, no. 7761 (June 2019): 349–53. http://dx.doi.org/10.1038/s41586-019-1303-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Morgan, David J. "Core-level spectra of powdered tungsten disulfide, WS2." Surface Science Spectra 25, no. 1 (June 2018): 014002. http://dx.doi.org/10.1116/1.5030093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sun, Shibin, Zengda Zou, and Guanghui Min. "Synthesis of tungsten disulfide nanotubes from different precursor." Materials Chemistry and Physics 114, no. 2-3 (April 2009): 884–88. http://dx.doi.org/10.1016/j.matchemphys.2008.10.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yadgarov, Lena, Bojana Višić, Tsafrir Abir, Ron Tenne, Alexander Yu Polyakov, Roi Levi, Tatyana V. Dolgova, et al. "Strong light–matter interaction in tungsten disulfide nanotubes." Physical Chemistry Chemical Physics 20, no. 32 (2018): 20812–20. http://dx.doi.org/10.1039/c8cp02245c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Longlu, Gang Zhou, Hong Luo, Qingfeng Zhang, Jue Wang, Chunwang Zhao, Apparao M. Rao, Bo Xu, and Bingan Lu. "Enhancing catalytic activity of tungsten disulfide through topology." Applied Catalysis B: Environmental 256 (November 2019): 117802. http://dx.doi.org/10.1016/j.apcatb.2019.117802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

He, Qun, Weiyu Xu, Shuangming Chen, Daobin Liu, Muhammad Habib, Qin Liu, Changda Wang, et al. "In situ growth of metallic 1T-WS2 nanoislands on single-walled carbon nanotube films for improved electrochemical performance." RSC Advances 6, no. 91 (2016): 87919–25. http://dx.doi.org/10.1039/c6ra19680b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Huang, Song Jeng, and Philip Nathaniel Immanuel. "Temperature Dependent Synthesis of Inorganic WS2 Nano Rods." Key Engineering Materials 830 (February 2020): 85–92. http://dx.doi.org/10.4028/www.scientific.net/kem.830.85.

Full text
Abstract:
In this report we report a simplest way to synthesis inorganic Tungsten disulfide (WS2) nanorods. In this research work we used Tungsten trioxide (WO3) to produce tungsten disulfide with hydrogen gas and sulfur gas to synthesis WS2 nanorods at ambient temperature. This synthesis was done by two steps. The first step is oxide reduction and the second step is Sulfuration. And we have analyzed the changes in the nanorod structure when the reaction time is increased and when the temperature is changed at constant gas flow. The synthesized nanorods are analyzed by SEM, EDS and XRD. We report that we have successfully synthesized WS2 nanorods with the dimension of 100 to 300 nm in diameter and few micrometers in length. And we also report the changes in the structural morphology when the temperature was increased. When the temperature was increased to 1000oC the structure become very ranom.
APA, Harvard, Vancouver, ISO, and other styles
49

Asunción-Nadal, Víctor de la, Beatriz Jurado-Sánchez, Luis Vázquez, and Alberto Escarpa. "Near infrared-light responsive WS2 microengines with high-performance electro- and photo-catalytic activities." Chemical Science 11, no. 1 (2020): 132–40. http://dx.doi.org/10.1039/c9sc03156a.

Full text
Abstract:
Tungsten disulfide based micromotors with enhanced electrochemical and photo-catalytic activities are synthesized using a simple electrochemical approach at room temperature without further building chemistry.
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Si, Yinxiang Zeng, Min Zhang, Shilei Xie, Yexiang Tong, Faliang Cheng, and Xihong Lu. "Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors." J. Mater. Chem. A 5, no. 40 (2017): 21460–66. http://dx.doi.org/10.1039/c7ta07009h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography