To see the other types of publications on this topic, follow the link: Tungstene hexacarbonyle.

Journal articles on the topic 'Tungstene hexacarbonyle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tungstene hexacarbonyle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Neustetter, Michael, Andreas Mauracher, Paulo Limão-Vieira, and Stephan Denifl. "Complete ligand loss in electron ionization of the weakly bound organometallic tungsten hexacarbonyl dimer." Physical Chemistry Chemical Physics 18, no. 15 (2016): 9893–96. http://dx.doi.org/10.1039/c6cp00558f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Кремлев, К. В., А. М. Объедков, Н. М. Семенов, Б. С. Каверин, С. Ю. Кетков, И. В. Вилков, П. В. Андреев, С. А. Гусев, and А. В. Аборкин. "Cинтез гибридных материалов на основе многостенных углеродных нанотрубок, декорированных нанопокрытиями WC-=SUB=-1-x-=/SUB=- различной морфологии." Письма в журнал технической физики 45, no. 7 (2019): 41. http://dx.doi.org/10.21883/pjtf.2019.07.47537.17644.

Full text
Abstract:
AbstractNew hybrid materials based on multiwalled carbon nanotubes (MWCNTs) with a nonstoichiometric tungsten carbide coating (WC_1 –_ x /MWCNTs) were synthesized by metalorganic chemical vapor deposition with tungsten hexacarbonyl used as a precursor. The mass ratio of precursors was varied to obtain nonstoichiometric tungsten carbide coatings of different morphologies ranging from spatially separated nanoparticles to a uniform ~300-nm-thick coating with a granular structure.
APA, Harvard, Vancouver, ISO, and other styles
3

Nikoobakht, Behnam. "2T2g ← 1A1g photo-electron spectrum of octahedral tungsten hexacarbonyl." Physical Chemistry Chemical Physics 18, no. 48 (2016): 33357–68. http://dx.doi.org/10.1039/c6cp06538d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Xixia, Qian Di, Xiaotong Wu, Yubin Liu, Yikang Yu, Guijuan Wei, Jun Zhang, and Zewei Quan. "Mild synthesis of monodisperse tin nanocrystals and tin chalcogenide hollow nanostructures." Chemical Communications 53, no. 80 (2017): 11001–4. http://dx.doi.org/10.1039/c7cc06729a.

Full text
Abstract:
A mild but robust synthetic strategy was developed to synthesize monodisperse Sn nanocrystals with tunable size by using tungsten hexacarbonyl as the reducing agent, and novel tin chalcogenide nanostructures have also been prepared using Sn nanocrystals as templates.
APA, Harvard, Vancouver, ISO, and other styles
5

Lucas, C. Robert. "Thioether complexes of tungsten hexacarbonyl." Canadian Journal of Chemistry 64, no. 9 (September 1, 1986): 1758–63. http://dx.doi.org/10.1139/v86-290.

Full text
Abstract:
The preparation of a series of organic and organometallic thioethers R3MSR′ (M = C, Si, Ge, or Sn) is reported. From these, several new compounds of type 1 are synthesized, some of which contain para-substituted aryl functions for R′ and R. In hexane solution in the carbonyl stretching region of the ir and in the uv there is evidence for a degree of multiple bonding, at least in the M—S—W—CO portion of these molecules. Multiple bonding extending into aromatic R or R′ is small or non-existent and cannot be assessed precisely because of spontaneous decomposition of the complexes. All the complexes undergo a thermally initiated decomposition, the ease of which depends on the nature of R, R′, and M. The unusual W(I) thiolate cis-[(CO)4W-μ-SR′]2 is the thermal decomposition product.
APA, Harvard, Vancouver, ISO, and other styles
6

PARK, BYOUNGTAE, and KIJUNG YONG. "SYNTHESIS AND CHARACTERIZATION OF TUNGSTEN OXIDE NANORODS." Surface Review and Letters 12, no. 05n06 (October 2005): 745–48. http://dx.doi.org/10.1142/s0218625x0500761x.

Full text
Abstract:
A new method is developed to obtain crystalline nanorods of WO 3 using tungsten organometallic compound, tungsten hexacarbonyl, at a low temperature of around 700°C. The diameters of the nanorods were in the range of 20–50 nm, and their lengths were up to several micrometers. The WO 3 nanorods had a clean surface without any particles. HRTEM and SAED pattern analysis results showed that the synthesized WO 3 nanorods had a monoclinic single-crystalline structure.
APA, Harvard, Vancouver, ISO, and other styles
7

Glezen, Marsha M., and Charles D. Jonah. "Pulse radiolysis of chromium hexacarbonyl and tungsten hexacarbonyl in alkane solution." Journal of Physical Chemistry 95, no. 12 (June 1991): 4736–41. http://dx.doi.org/10.1021/j100165a027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Zhan, Masahiro Nakajima, Yasuhito Ode, and Toshio Fukuda. "Tungsten/Platinum Hybrid Nanowire Growth via Field Emission Using Nanorobotic Manipulation." Journal of Nanotechnology 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/386582.

Full text
Abstract:
This paper reports tungsten-platinum hybrid nanowire growth via field emission, based on nanorobotic manipulation within a field emission scanning electron microscope (FESEM). A multiwalled carbon nanotube (MWCNT) was used as the emitter, and a tungsten probe was used as the anode at the counterposition, by way of nanomanipulation. By independently employing trimethylcyclopentadienyl platinum (CpPtMe3) and tungsten hexacarbonyl (W(CO)6) as precursors, the platinum nanowire grew on the tip of the MWCNT emitter. Tungsten nanowires then grew on the tip of the platinum nanowire. The hybrid nanowire length wascontrolled by nanomanipulation. Their purity was evaluated using energy-dispersive X-ray spectroscopy (EDS). Thus, it is possible to fabricate various metallic hybrid nanowires by changing the precursor materials. Hybrid nanowires have various applications in nanoelectronics, nanosensor devices, and nanomechanical systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Magnusson, Martin H., Knut Deppert, and Jan-Olle Malm. "Single-crystalline Tungsten Nanoparticles Produced by Thermal Decomposition of Tungsten Hexacarbonyl." Journal of Materials Research 15, no. 7 (July 2000): 1564–69. http://dx.doi.org/10.1557/jmr.2000.0224.

Full text
Abstract:
Nanometer-sized particles of W are of interest in semiconductor device research, where such particles may store electrons inside heteroepitaxially defined structures. In this paper, we present results concerning W particles produced by thermal decomposition of tungsten hexacarbonyl. By the described method, it was possible to produce size-selected, single-crystalline W particles in the size range between 15 and 60 nm. The sintering behavior of the particles was studied between ambient temperatures and 1900 °C. The particle morphology and structure were examined with high-resolution transmission electron microscopy and electron diffraction techniques. Particles sintered at the highest temperatures typically were single crystals, with well-developed facets. Some problems concerning a yield reducing charging mechanism are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Morkan, İ. Amour, and A. Uztetik-Morkan. "Photochemical Synthesis and Identification of Tetracarbonyl-bis(olefin)metal(0) Complexes of Group VI B Elements." Zeitschrift für Naturforschung B 55, no. 12 (December 1, 2000): 1153–56. http://dx.doi.org/10.1515/znb-2000-1208.

Full text
Abstract:
Photolysis of hexacarbonyl metal(0) or tetracarbonyl-bis(1,3-butadiene)metal(0) (metal: chromium, molybdenum, tungsten) in the presence of tetracyanoethylene, TCNE, or fumaronitrile , FN, at room temperature yields fram-bis(μ2-tetracyano-ethylene)tetracarbonyl-chromium(0) (1), -molybdenum(0) (2), -tungsten(0) (3) and trans-bis(fumaronitrile)tetracarbonylchromium(0) (4), -tungsten(0) (5) complexes. The complexes were purified by chromatography and recrystallization and characterized by IR , 1H, 13C NMR and mass spectroscopies. It is shown that two tetracyanoethylene ligands are symmetrically bonded to the M(CO)4 moiety through their carbon-carbon double bond in the form of μ2 -TCNE . The two fumaronitrile ligands are bonded to the central atom through their nitrogen atoms. The spectral data are discussed in terms of metal → ligand π - interaction.
APA, Harvard, Vancouver, ISO, and other styles
11

Sahoo, Prasanta Kumar, S. S. Kalyan Kamal, M. Premkumar, T. Jagadeesh Kumar, B. Sreedhar, A. K. Singh, S. K. Srivastava, and K. Chandra Sekhar. "Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl." International Journal of Refractory Metals and Hard Materials 27, no. 4 (July 2009): 784–91. http://dx.doi.org/10.1016/j.ijrmhm.2009.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kozyreva, L. V., V. V. Kozyrev, and I. S. Krekova. "Environment safety technology of creating coated powder of technical ceramics." Perspektivnye Materialy, no. 11 (2020): 64–72. http://dx.doi.org/10.30791/1028-978x-2020-6-64-72.

Full text
Abstract:
Application of fuller materials for creation of the higt-strength coatings on part operating under abrasive wear is one of the promising ways of the resources increasing of road construction, emergency rescue and other types of equipment. However, in their creation process does not always comply with the environmental safety requirements, which leads to negative consequences for the natural environment and human health. The article presents the research work results of authors team created a coated powder by chemical vapor deposition of metal-organic compounds on the alumina particles surface and its applications for the wear-resistant coatings. A method of applying iron-tungsten coating on powder technical ceramics by thermal decomposition of vapors, containing iron pentacarbonyl and tungsten hexacarbonyl, is characterised by sequential application on powder particles of adhesion layer from mixture of iron pentacarbonyl and carbon monoxide in volume ratio of vapours1:5 at temperature of their thermal decomposition of 250 °С, and then surface layer from mixture of tungsten hexacarbonyl and carbon monoxide in volume ratio of vapours1:5 at temperature of their thermal decomposition of 800 °С. Metallization powder materials are carried out in a closed cycle, excluding contact workers with toxic substances and emissions of pollutants into the atmosphere, which ensures the safety of the production process. Plasma coatings obtained with the necessary physical and mechanical properties are obtained, which proves the effectiveness of the employed approach and promotes resource increase of the machines elements, subjected to abrasive wear.
APA, Harvard, Vancouver, ISO, and other styles
13

Mour, İzzet A., Saim Ozkar, and Cornelius G. Kreiter. "Synthesis and Spectroscopic Studies of Pentacarbonylfumaronitrile-chromium(0), -molybdenum(0), and -tungsten(0)." Zeitschrift für Naturforschung B 49, no. 8 (August 1, 1994): 1059–62. http://dx.doi.org/10.1515/znb-1994-0808.

Full text
Abstract:
Photolysis of hexacarbonyl-chromium(0), -molybdenum(0), and -tungsten(0) in presence of fumaronitrile yields at room temperature pentacarbonyl-fumaronitrile-chromium(0) (1), - molybdenum(0) (2), and -tungsten(0) (3). The complexes were purified by crystallization and characterized by IR and 13C-NMR spectroscopy. The fumaronitrile ligand is bonded to the M(CO)5 moiety by one nitrile nitrogen atom rather than by the carbon-carbon double bond. In toluene 2 dissociates into fumaronitrile and pentacarbonyl-molybdenum(0), which is stabi­lized by the solvent. Fumaronitrile and solvated pentacarbonyl-molybdenum(0) exist in solu­tion together with 2 in an equilibrium which lies in favour of the former species.
APA, Harvard, Vancouver, ISO, and other styles
14

Langford, Cooper H., Carol Moralejo, and Devendra K. Sharma. "The kinetics of photodissociation of tungsten hexacarbonyl." Inorganica Chimica Acta 126, no. 2 (January 1987): L11—L12. http://dx.doi.org/10.1016/s0020-1693(00)84423-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, S. P., and M. Schwartz. "Reorientational diffusion of tungsten hexacarbonyl in solution." Journal of Molecular Liquids 47, no. 1-3 (November 1990): 121–28. http://dx.doi.org/10.1016/0167-7322(90)80070-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Pou, Fumihito Arai, Lixin Dong, Toshio Fukuda, Tsuneyuki Noguchi, and Katsuyoshi Tatenuma. "Field Emission of Individual Carbon Nanotubes and its Improvement by Decoration with Ruthenium Dioxide Super-Nanoparticles." Journal of Robotics and Mechatronics 17, no. 4 (August 20, 2005): 475–82. http://dx.doi.org/10.20965/jrm.2005.p0475.

Full text
Abstract:
To reduce energy consumption by carbon nanotubes (CNTs) used as emitters in applications such as field emission display, and electron-beam-induced deposition (EBID), nano-sized metallic super-nanoparticles of ruthenium dioxide are decorated on the surface of CNTs. We studied field emission properties and found that the work voltage is 23% lower than that of as-grown CNT emitters. To obtain conductive nanostructures, electron-beam-induced deposition using an individual multiwalled carbon nanotube (MWNT) emitter decorated with ruthenium dioxide is realized by introducing tungsten hexacarbonyl (W(CO)6) as a precursor. The tungsten mass in deposits is rich at 98.89% as determined by energy x-ray dispersive spectrometer (EDS). We thus obtained nearly pure-metal deposits.
APA, Harvard, Vancouver, ISO, and other styles
17

Roesky, Herbert W., Jörg Sundermeyer,, Jürgen Schimkowiak, Peter G. Jones, Mathias Noltemeyer, Tina Schroeder, and George M. Sheldrick. "Facile Synthesis and Crystal Structure of [(PhSO2 N)2 WVI Cl2 (CH3CN)2] - the Oxidative Imination of W(CO)6 by N,N-Dichlorophenylsulphonamide." Zeitschrift für Naturforschung B 40, no. 6 (June 1, 1985): 736–39. http://dx.doi.org/10.1515/znb-1985-0608.

Full text
Abstract:
AbstractThe reaction of N,N-dichlorophenylsulphonamide with tungsten hexacarbonyl in refluxing CCl4 leads in good yield to the yellow polymeric complex [(PhSO2N)2WCl2]x, which may be converted to the octahedral nitrene complex [(PhSO2N)2WCl2(CH3CN)2] by recrystallisation from aceto­nitrile. Crystals of the acetonitrile complex are triclinic, space group P 1̅, a = 820.7(2), b = 1128.8(3), c = 1286.9(3) pm, α = 89.25(3), β = 89.54(3). γ = 72.67(2)°, Z = 2, R = 0.027 for 2527 unique observed reflections.
APA, Harvard, Vancouver, ISO, and other styles
18

Zaera, Francisco. "Tungsten hexacarbonyl thermal decomposition on nickel(100) surfaces." Journal of Physical Chemistry 96, no. 11 (May 1992): 4609–15. http://dx.doi.org/10.1021/j100190a086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dubtsov, S. N., A. I. Levykin, and K. K. Sabelfeld. "KINETICS OF AEROSOL FORMATION DURING TUNGSTEN HEXACARBONYL PHOTOLYSIS." Journal of Aerosol Science 31, no. 5 (May 2000): 509–18. http://dx.doi.org/10.1016/s0021-8502(99)00539-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Heinemann, F., H. Schmidt, K. Peters, and D. Thiery. "Crystal structure of hexacarbonyl tungsten, W(CO)6." Zeitschrift für Kristallographie 198, no. 1-2 (January 1992): 123–24. http://dx.doi.org/10.1524/zkri.1992.198.1-2.123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ishikawa, Yoichi, Peter A. Hackett, and David M. Rayner. "Excimer laser photolysis of gas-phase tungsten hexacarbonyl." Journal of Physical Chemistry 92, no. 13 (June 1988): 3863–69. http://dx.doi.org/10.1021/j100324a037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Görge, Astrid, Kurt Dehnicke, and Dieter Fenske. "N-Chlornitrenokomplexe des Wolframs: WCl4 (NCl) und [CH3CN-WCl4 (NCl)] / N-Chloro-Nitrene Complexes of Tungsten:WCl4 (NCl) and [CH3CN-WCl4 (NCl)]." Zeitschrift für Naturforschung B 43, no. 6 (June 1, 1988): 677–81. http://dx.doi.org/10.1515/znb-1988-0607.

Full text
Abstract:
WCl4(NCl) has been prepared as a red-brown crystal powder by the reaction of tungsten hexacarbonyl with excess nitrogen trichloride in boiling CCl4. The complex is associated via chloro bridges, forming dimeric units, according to the IR spectrum. Thermal decomposition at 200 °C leads to tungsten nitride trichloride, WNCl3,. With acetonitrile, WCl4(NCl) reacts with formation of the monomeric complex [CH,CN-WCl4(NCl)], which was characterized by its IR spectrum as well as by an X-ray structure determination. Crystal data: space group P21/m, Z = 2 (1387 independent observed reflexions, R = 0.07). Lattice dimensions at 20 °C: a = 590.4(3), b = 729.0(3), c = 1124.6(4) pm, β = 100.63(2)°. The complex forms monomeric molecules, in which the tungsten atom has a distorted octahedral environment of four chlorine atoms in equatorial positions, and the acetonitrile molecule in trans-position to the group. Bond lengths WN = 172 and NCI = 161 pm; bond angle WNCl = 175.5°.
APA, Harvard, Vancouver, ISO, and other styles
23

Doddapaneni, V. Vinay K., Kijoon Lee, Tyler T. Colbert, Saereh Mirzababaei, Brian K. Paul, Somayeh Pasebani, and Chih-Hung Chang. "A Scalable Solution Route to Porous Networks of Nanostructured Black Tungsten." Nanomaterials 11, no. 9 (September 5, 2021): 2304. http://dx.doi.org/10.3390/nano11092304.

Full text
Abstract:
This paper studied the feasibility of a new solution-processed method to manufacture black tungsten nanostructures by laser conversion of tungsten hexacarbonyl precursor on the Inconel 625 substrate under argon atmosphere at ambient pressure. The results show that sublimation of the precursor can be prevented if the decomposition temperature (>170 °C) is achieved using the laser heating method. Three different laser powers from 60–400 W were used to investigate the role of laser parameters on the conversion. It was found that lower laser power of 60 W resulted in a mixture of unconverted precursor and converted tungsten. Higher laser powers >200 W resulted in α-W (BCC) in one step without further heat treatment. Different oxygen concentrations from 0.5 ppm to 21 vol% were used in the laser canister to investigate the effect of oxygen concentration on the conversion. It was found that the hard vacuum (>10−4 torr) or hydrogen is not necessary to obtain α-W (BCC). The solar absorptance varied from 63–97%, depending on the amount of precursor deposited on the substrate and oxygen content in the laser canister. This solution-based laser conversion of tungsten precursor is a scalable method to manufacture tungsten coatings for high-temperature applications.
APA, Harvard, Vancouver, ISO, and other styles
24

Xiao, Lang, Ting Zhou, Yuanzhi Chen, Zhichao Wang, Hongfei Zheng, Wanjie Xu, Deqian Zeng, and Dong-Liang Peng. "Tungsten hexacarbonyl-induced growth of nickel nanorods and nanocubes." Materials Letters 229 (October 2018): 340–43. http://dx.doi.org/10.1016/j.matlet.2018.07.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Suvanto, Mika, and Tapani A. Pakkanen. "Tungsten hexacarbonyl on alumina controlled deposition from gas phase." Applied Catalysis A: General 166, no. 1 (January 1998): 105–13. http://dx.doi.org/10.1016/s0926-860x(97)00246-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Watanabe, Akira, Tomoko Watanabe, Yue Jin Shan, Keitaro Tezuka, Hideo Imoto, and Akira Uedono. "Reversible Photodissociation of Hexacarbonyl Tungsten in Cross-Linked Polymers." Bulletin of the Chemical Society of Japan 79, no. 11 (November 2006): 1787–92. http://dx.doi.org/10.1246/bcsj.79.1787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wipf, Peter, and Thomas H. Graham. "Photoactivated Tungsten Hexacarbonyl-Catalyzed Conversion of Alkynols to Glycals." Journal of Organic Chemistry 68, no. 23 (November 2003): 8798–807. http://dx.doi.org/10.1021/jo034813s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Neustetter, M., E. Jabbour Al Maalouf, P. Limão-Vieira, and S. Denifl. "Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization." Journal of Chemical Physics 145, no. 5 (August 7, 2016): 054301. http://dx.doi.org/10.1063/1.4959278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Nikolaev, Alexander Yu, Alexander A. Khokhlov, Eduard E. Levin, Sergey S. Abramchuk, Elena P. Kharitonova, and Marat O. Gallyamov. "Electrochemically active dispersed tungsten oxides obtained from tungsten hexacarbonyl in supercritical carbon dioxide." Journal of Materials Science 54, no. 13 (April 4, 2019): 9426–41. http://dx.doi.org/10.1007/s10853-019-03591-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Domenichini, B., J. Prunier, M. Petukov, Z. Li, P. J. Møller, and S. Bourgeois. "From tungsten hexacarbonyl adsorption on TiO2(110) surface to supported tungsten oxide phases." Journal of Electron Spectroscopy and Related Phenomena 163, no. 1-3 (April 2008): 19–27. http://dx.doi.org/10.1016/j.elspec.2008.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lai, Ken K., and H. Henry Lamb. "Tungsten chemical vapor deposition using tungsten hexacarbonyl: microstructure of as-deposited and annealed films." Thin Solid Films 370, no. 1-2 (July 2000): 114–21. http://dx.doi.org/10.1016/s0040-6090(00)00943-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Watson, I. M., J. A. Connor, and R. Whyman. "Low temperature pyrolysis products of chromium, molybdenum and tungsten hexacarbonyls." Polyhedron 8, no. 13-14 (January 1989): 1794–96. http://dx.doi.org/10.1016/s0277-5387(00)80648-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mohamed, Hassan A. "Photochemical reactions of chromium, molybdenum and tungsten hexacarbonyls with dimethylglyoxime." Journal of Molecular Structure 784, no. 1-3 (February 2006): 254–58. http://dx.doi.org/10.1016/j.molstruc.2005.09.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Monte, Manuel J. S., Ana R. R. P. Almeida, and Rafael Notario. "Volatility and chemical stability of chromium, molybdenum, and tungsten hexacarbonyls." Journal of Thermal Analysis and Calorimetry 132, no. 2 (February 2, 2018): 1201–11. http://dx.doi.org/10.1007/s10973-018-7033-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhao, Xixia, Qian Di, Mingrui Li, Qi Yang, Ziyun Zhang, Xinyang Guo, Xiaokun Fan, et al. "Generalized Synthesis of Uniform Metal Nanoparticles Assisted with Tungsten Hexacarbonyl." Chemistry of Materials 31, no. 12 (March 26, 2019): 4325–29. http://dx.doi.org/10.1021/acs.chemmater.9b00219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dunkelberger, Adam D., Andrea B. Grafton, Igor Vurgaftman, Öney O. Soykal, Thomas L. Reinecke, Roderick B. Davidson, Blake S. Simpkins, and Jeffrey C. Owrutsky. "Saturable Absorption in Solution-Phase and Cavity-Coupled Tungsten Hexacarbonyl." ACS Photonics 6, no. 11 (October 2, 2019): 2719–25. http://dx.doi.org/10.1021/acsphotonics.9b00703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wnorowski, K., M. Stano, C. Matias, S. Denifl, W. Barszczewska, and Š. Matejčík. "Low-energy electron interactions with tungsten hexacarbonyl - W(CO)6." Rapid Communications in Mass Spectrometry 26, no. 17 (July 23, 2012): 2093–98. http://dx.doi.org/10.1002/rcm.6324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rademacher, Nadine, Lkhamsuren Bayarjargal, Björn Winkler, Hyunjeong Kim, Katharine Page, and Thomas Proffen. "Studies on the decomposition of tungsten hexacarbonyl, W(CO)6." Acta Crystallographica Section A Foundations of Crystallography 66, a1 (August 29, 2010): s201—s202. http://dx.doi.org/10.1107/s0108767310095450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hoyle, P. C., M. Ogasawara, J. R. A. Cleaver, and H. Ahmed. "Electrical resistance of electron beam induced deposits from tungsten hexacarbonyl." Applied Physics Letters 62, no. 23 (June 7, 1993): 3043–45. http://dx.doi.org/10.1063/1.109133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Andrews, S. R., and D. E. Parry. "Theoretical analysis of double charge transfer spectra for tungsten hexacarbonyl." Chemical Physics Letters 205, no. 1 (April 1993): 102–7. http://dx.doi.org/10.1016/0009-2614(93)85174-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Beranová, Šárka, and Chrys Wesdemiotis. "Internal energy distributions of tungsten hexacarbonyl ions after neutralization—Reionization." Journal of the American Society for Mass Spectrometry 5, no. 12 (December 1994): 1093–101. http://dx.doi.org/10.1016/1044-0305(94)85070-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Tamenori, Yusuke, Kazushige Inaoka, and Inosuke Koyano. "Dissociative photoionization of hexacarbonyl tungsten in the range 30–120eV." Journal of Electron Spectroscopy and Related Phenomena 79 (May 1996): 503–6. http://dx.doi.org/10.1016/0368-2048(96)02905-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Keiter, Richard L., Ellen A. Keiter, K. Neil Mittelberg, J. Scott Martin, Victoria M. Meyers, and Jin Guu Wang. "Reactions of molybdenum and tungsten hexacarbonyls with diphenylphosphine and sodium borohydride." Organometallics 8, no. 6 (June 1989): 1399–403. http://dx.doi.org/10.1021/om00108a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Malli, Gulzari L. "Dirac-Fock-Breit-Gaunt calculations for tungsten hexacarbonyl W(CO)6." Journal of Chemical Physics 144, no. 19 (May 21, 2016): 194301. http://dx.doi.org/10.1063/1.4948809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rosenberg, Samantha G., Michael Barclay, and D. Howard Fairbrother. "Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6)." Physical Chemistry Chemical Physics 15, no. 11 (2013): 4002. http://dx.doi.org/10.1039/c3cp43902j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Horňák, Peter, Daniel Kottfer, Karol Kyzioł, Marianna Trebuňová, Janka Majerníková, Łukasz Kaczmarek, Jozef Trebuňa, Ján Hašuľ, and Miroslav Paľo. "Microstructure and Mechanical Properties of Annealed WC/C PECVD Coatings Deposited Using Hexacarbonyl of W with Different Gases." Materials 13, no. 16 (August 13, 2020): 3576. http://dx.doi.org/10.3390/ma13163576.

Full text
Abstract:
The present work studies the tungsten carbide (WC/C) coatings deposited by using Plasma Enhanced Chemical Vapor Deposition (PECVD), with and without gases of Ar and N2. Volatile hexacarbonyl of W was used as a precursor. Their mechanical and tribological properties were evaluated. The following values were obtained by using deposition process with N2 of HIT = 19.7 ± 4.1 GPa, EIT = 221 ± 2.1 GPa, and coefficient of friction (COF) = 0.35 ± 0.09. Secondly, deposition without the aforementioned gas obtained values of HIT = 20.9 ± 2 GPa, EIT = 292 ± 20 GPa, and COF = 0.69 ± 0.05. WC/C coatings were annealed at temperatures of 200, 500, and 800 °C, respectively. Evaluated factors include the introduced properties, the observed morphology, and the structural composition of WC/C coatings. The process of degradation was carried out by using various velocities, depending on used gases and annealing temperatures.
APA, Harvard, Vancouver, ISO, and other styles
47

Hor, T. S. Andy, Hardy S. O. Chan, Ying-Phooi Leong, and Mei-Mei Tan. "X. Thermogravimetric and quantitative studies of the oxidative decarbonylation of tungsten hexacarbonyl." Journal of Organometallic Chemistry 373, no. 2 (September 1989): 221–28. http://dx.doi.org/10.1016/0022-328x(89)85047-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jackson, David H. K., Bryan A. Dunn, Yingxin Guan, and Thomas F. Kuech. "Tungsten hexacarbonyl and hydrogen peroxide as precursors for the growth of tungsten oxide thin films on titania nanoparticles." AIChE Journal 60, no. 4 (February 19, 2014): 1278–86. http://dx.doi.org/10.1002/aic.14397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Burie, Jean-René, Paul B. Davies, Graeme M. Hansford, Nicholas A. Martin, Jun Gang, and Douglas K. Russell. "Diode laser infrared spectroscopy of jet-cooled hexacarbonyls of chromium, molybdenum, and tungsten." Molecular Physics 74, no. 4 (November 1991): 919–22. http://dx.doi.org/10.1080/00268979100102691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhu, Liangdong, Sumit Saha, Yanli Wang, Douglas A. Keszler, and Chong Fang. "Monitoring Photochemical Reaction Pathways of Tungsten Hexacarbonyl in Solution from Femtoseconds to Minutes." Journal of Physical Chemistry B 120, no. 51 (December 15, 2016): 13161–68. http://dx.doi.org/10.1021/acs.jpcb.6b11773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography