Academic literature on the topic 'Turbine blade'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbine blade.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turbine blade"
Xing, Zhitai, Yan Jia, Lei Zhang, Xiaowen Song, Yanfeng Zhang, Jianxin Wu, Zekun Wang, Jicai Guo, and Qingan Li. "Research on Wind Turbine Blade Damage Fault Diagnosis Based on GH Bladed." Journal of Marine Science and Engineering 11, no. 6 (May 26, 2023): 1126. http://dx.doi.org/10.3390/jmse11061126.
Full textWijaya, Rudi Kusuma, and Iwan Kurniawan. "Study Experimental Darrieus Type-H Water Turbines Using NACA 2415 Standard Hydrofoil Blade." Jurnal Pendidikan Teknik Mesin Undiksha 9, no. 2 (August 31, 2021): 109–23. http://dx.doi.org/10.23887/jptm.v9i2.29257.
Full textJamal, Jamal. "Pengaruh Jumlah Sudu Terhadap Kinerja Turbin Savonius." INTEK: Jurnal Penelitian 6, no. 1 (May 25, 2019): 64. http://dx.doi.org/10.31963/intek.v6i1.1127.
Full textCao, Kathy, Kelsey Shaler, and Nick Johnson. "Comparing wind turbine aeroelastic response predictions for turbines with increasingly flexible blades." Journal of Physics: Conference Series 2265, no. 3 (May 1, 2022): 032025. http://dx.doi.org/10.1088/1742-6596/2265/3/032025.
Full textAlipour, Ramin, Roozbeh Alipour, Seyed Saeid Rahimian Koloor, Michal Petrů, and Seyed Alireza Ghazanfari. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine." Sustainability 12, no. 15 (July 24, 2020): 5985. http://dx.doi.org/10.3390/su12155985.
Full textMcNerney, G. M., C. P. van Dam, and D. T. Yen-Nakafuji. "Blade-Wake Interaction Noise for Turbines With Downwind Rotors." Journal of Solar Energy Engineering 125, no. 4 (November 1, 2003): 497–505. http://dx.doi.org/10.1115/1.1627830.
Full textPeczkis, Grzegorz, Piotr Wiśniewski, and Andriy Zahorulko. "Experimental and Numerical Studies on the Influence of Blade Number in a Small Water Turbine." Energies 14, no. 9 (May 2, 2021): 2604. http://dx.doi.org/10.3390/en14092604.
Full textSahin, M., and T. Farsadi. "Effects of Atmospheric Icing on Performance of Controlled Wind Turbine." IOP Conference Series: Earth and Environmental Science 1121, no. 1 (December 1, 2022): 012011. http://dx.doi.org/10.1088/1755-1315/1121/1/012011.
Full textZhang, Xiao, and Maosheng Zheng. "Numerical Simulation of Fluid-Structure Coupling for a Multi-Blade Vertical-Axis Wind Turbine." Applied Sciences 13, no. 15 (July 26, 2023): 8612. http://dx.doi.org/10.3390/app13158612.
Full textChen, Kun Nan, and Wei Hsin Gau. "Structural Optimization on Composite Blades of Large-Scale Wind Turbines." Applied Mechanics and Materials 284-287 (January 2013): 958–62. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.958.
Full textDissertations / Theses on the topic "Turbine blade"
Choi, Jungho. "An experimental investigation of turbine blade heat transfer and turbine blade trailing edge cooling." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1377.
Full textGuerra, Mario. "Turbomachinery turbine blade vibratory stress prediction." Mémoire, École de technologie supérieure, 2006. http://espace.etsmtl.ca/535/1/GUERRA_Mario.pdf.
Full textSong, Wenbin. "Shape optimization of turbine blade firtrees." Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268934.
Full textKountras, Apostolos 1970. "Probabilistic analysis of turbine blade durability." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28893.
Full textIncludes bibliographical references (leaves 71-72).
The effect of variability on turbine blade durability was assessed for seven design/operating parameters in three blade designs. The parameters included gas path and cooling convective parameters, metal and coating thermal conductivity and coating thickness. The durability life was modelled as limited by thermo-mechanical low cycle fatigue and creep. A nominal blade design as well as two additional variants were examined using deterministic and probabilistic approaches. External thermal and pressure boundary conditions were generated by three-dimensional CFD calculations. The location of expected failure was the bottom of the trailing edge cooling slot and was the same for all three designs examined. The nominal design had higher life and less variability for the ranges of design parameters examined. For the temperature range studied fatigue was the primary damage mechanism. The variation in cooling air bulk temperature was most important in setting the variation in blade durability life. This life variation was also affected by main gas bulk temperature and heat transfer coefficient, and cooling heat transfer coefficient, but to a lesser extent.
by Apostolos Kountras.
S.M.
Barry, Pamela S. (Pamela Sue). "Rotational effects on turbine blade cooling." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12114.
Full textTitle as it appears in the June 1994 MIT Graduate List: Rotational effects of turbine cooling.
Includes bibliographical references (leaves 102-103).
by Pamela S. Barry.
M.S.
Ryley, Joshua Claydon. "Turbine blade mid-chord internal cooling." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:14469a51-517c-400c-b477-4fb432c8b648.
Full textWu, Daniel. "The Effect of Blade Aeroelasticity and Turbine Parameters on Wind Turbine Noise." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78714.
Full textMaster of Science
Hettasch, Georg. "Optimization of fir-tree-type turbine blade roots using photoelasticity." Thesis, Stellenbosch : University of Stellenbosch, 1992. http://hdl.handle.net/10019.1/993.
Full textThesis (MEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 1992
ENGLISH ABSTRACT: The large variety of turbo-machinery blade root geometries in use in industry prompted the question if a optimum geometry could be found. An optimum blade root was defined as a root with a practical geometry which, when loaded, returns the minimum fillet stress concentration factor. A literature survey on the subject provided guidelines but very little real data to work from. An initial optimization was carried out using a formula developed by Heywood to determine loaded projection fillet stresses. The method was found to produce unsatisfactory results, prompting a photoelastic investigation. This experimental optimization was conducted in two stages. A single tang defined load stage and a single tang in-rotor stage which modeled the practical situation. The defined load stage was undertaken in three phases. The first phase was a preliminary investigation, the second phase was a parameter optimization and the third phase was a geometric optimization based on a material utilization optimization. This material optimization approach produced good results. From these experiments a practical optimum geometry was defined. A mathematical model which predicts the fillet stress concentration factor for a given root geometry is presented. The effect of expanding the single tang optimum to a three tang root was examined.
AFRIKAANSE OPSOMMING: Die groot verskeidenheid lemwortelgeometrieë wat in turbomasjiene gebruik word het die vraag na 'n optimum geometrie laat ontstaan. Vir hierdie ondersoek is 'n optimum geometrie gedefineer as 'n praktiese geometrie wat, as dit belas word, die mimimum vloeistukspanningskonsentrasiefaktor laat ontstaan. 'n Literatuur studie het riglyne aan die navorsing gegee maar het wynig spesifieke en bruikbare data opgelewer. Die eerste optimering is met die Heywood formule, wat vloeistukspannings in belaste projeksies bepaal, aangepak. Die metode het nie bevredigende resultate opgelewer nie. 'n Fotoelastiese ondersoek het die basis vir verdere optimeering gevorm. Hierdie eksperimentele optimering is in twee stappe onderneem. 'n Enkelhaak gedefineerde lasgedeelte en 'n enkelhaak in-rotor gedeelte het die praktiese situasie gemodeleer. Die gedefineerde lasgedeelte is in drie fases opgedeel. Die eerste fase was n voorlopige ondersoek. Die tweede fase was 'n parameter optimering. 'n Geometrie optimering gebasseer op 'n materiaal benuttings minimering het die derde fase uitgemaak. Die materiaal optimerings benadering het goeie resultate opgelewer. Vanuit hierdie eksperimente is 'n optimum praktiese geometrie bepaal. 'n Wiskundige model is ontwikkel, wat die vloeistukspanningskonsentrasiefaktor vir 'n gegewe wortelgeometrie voorspel. Die resultaat van 'n geometriese uitbreiding van die enkelhaaklemwortel na 'n driehaaklemwortel op die spanningsverdeling is ondersoek.
Walker, Peter John. "Blade lean in axial turbines : model turbine measurements and simulation by a novel numerical method." Thesis, University of Cambridge, 1988. https://www.repository.cam.ac.uk/handle/1810/250922.
Full textJanse, van Vuuren Gregory. "Extracting blade condition information from the pressure field around a turbine blade." Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/73187.
Full textDissertation (MEng)--University of Pretoria, 2019.
ESKOM
Centre for Asset Integrity Management (C-AIM)
Mechanical and Aeronautical Engineering
MEng
Unrestricted
Books on the topic "Turbine blade"
Ghodke, Chaitanya D. Gas Turbine Blade Cooling. Warrendale, PA: SAE International, 2018. http://dx.doi.org/10.4271/0768095069.
Full textGhodke, Chaitanya. Gas Turbine Blade Cooling. Warrendale, PA: SAE International, 2018. http://dx.doi.org/10.4271/pt-196.
Full textShea, Daniel. Ceramic barrier turbine blade demonstration. Watertown, Massachusetts: U.S.Army Materials Technology Laboratory, 1986.
Find full textZhang, Dinghua, Yunyong Cheng, Ruisong Jiang, and Neng Wan. Turbine Blade Investment Casting Die Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54188-3.
Full textP, Camperchioli William, López Freyle Isaac, United States. Army Aviation Systems Command., and United States. National Aeronautics and Space Administration., eds. Transonic turbine blade cascade testing facility. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textNoot, Marc. Numerical analysis of turbine blade cooling ducts. Eindhoven: Eindhoven University, 1997.
Find full textBaumeister, Kenneth J. Unsteady heat transfer in turbine blade ducts. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Find full textMartinez-Sanchez, Manuel. Turbine blade-tip clearance excitation forces: Final report on Contract number NAS8-35018. Cambridge, Mass: Massachusetts Institute of Technology, 1985.
Find full textMartinez-Sanchez, Manuel. Turbine blade-tip clearance excitation forces: Final report on Contract number NAS8-35018. Cambridge, Mass: Massachusetts Institute of Technology, 1985.
Find full textM, Greitzer Edward, George C. Marshall Space Flight Center., and Massachusetts Institute of Technology, eds. Turbine blade-tip clearance excitation forces: Final report on Contract number NAS8-35018. Cambridge, Mass: Massachusetts Institute of Technology, 1985.
Find full textBook chapters on the topic "Turbine blade"
Glocker, Christoph. "Turbine Blade Damper." In Set-Valued Force Laws, 195–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44479-4_14.
Full textAbo-Serie, Essam, and Elif Oran. "Flow Simulation of a New Horizontal Axis Wind Turbine with Multiple Blades for Low Wind Speed." In Springer Proceedings in Energy, 93–106. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_10.
Full textSchobeiri, Meinhard T. "Blade Design." In Gas Turbine Design, Components and System Design Integration, 249–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58378-5_9.
Full textSchobeiri, Meinhard T. "Blade Design." In Gas Turbine Design, Components and System Design Integration, 249–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23973-2_9.
Full textMalik, Lohit, Gurtej Singh Saini, Mayand Malik, and Abhishek Tevatia. "Sustainability of Wind Turbine Blade." In Handbook of Sustainable Materials: Modelling, Characterization, and Optimization, 399–430. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003297772-20.
Full textZhang, Dinghua, Wenhu Wang, Kun Bu, and Yunyong Cheng. "Digitized Modeling Technology of Turbine Blade." In Turbine Blade Investment Casting Die Technology, 21–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54188-3_2.
Full textSirojuddin, Alya Awanis Zahara, and Ragil Sukarno. "Investigation of the Runner Blade Arrangements on a 3-Blade Kaplan Turbine Against Turbine Power." In Recent Advances in Renewable Energy Systems, 97–104. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1581-9_11.
Full textBunker, Ronald S. "Blade Tip Aerodynamics and Heat Transfer." In Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics, 351–88. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2014. http://dx.doi.org/10.2514/5.9781624102660.0351.0388.
Full textAdiwibowo, Priyo Heru, Soeryanto Soeryanto, Wahyu Dwi Kurniawan, and I. Made Arsana. "Crossflow Hydro Turbine with the Interference Blade Improve Turbine Performance." In Proceedings of the International Joint Conference on Science and Engineering 2022 (IJCSE 2022), 196–202. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-100-5_20.
Full textZhang, Dinghua, Yunyong Cheng, Ruisong Jiang, and Neng Wan. "Introduction." In Turbine Blade Investment Casting Die Technology, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54188-3_1.
Full textConference papers on the topic "Turbine blade"
Tamai, Ryoji, Ryozo Tanaka, Yoshichika Sato, Karsten Kusterer, Gang Lin, Martin Kemper, and Lars Panning-von Scheidt. "Vibration Analysis of Shrouded Turbine Blades for a 30 MW Gas Turbine." In ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2014.
Full textMurthy, Raghavendra, and Marc P. Mignolet. "Decreasing Bladed Disk Response With Dampers on a Few Blades: Part II—Nonlinear and Blade-Blade Dampers Applications." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69797.
Full textGranovskiy, Andrey, Igor Manaev, Vladimir Vassiliev, and Harald Kissel. "Effects of Blade Degradation on Turbine Performance." In ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2039.
Full textSzéchényi, Edmond. "Fan Blade Flutter: Single Blade Instability or Blade to Blade Coupling?" In ASME 1985 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-gt-216.
Full text"ASME Conference Presenter Attendance Policy and Archival Proceedings." In ASME 2013 Turbine Blade Tip Symposium. ASME, 2013. http://dx.doi.org/10.1115/tbts2013-ns.
Full textTikhonov, Aleksei S., Andrey A. Shvyrev, and Nikolay Yu Samokhvalov. "Turbine Split Rings Thermal Design Using Conjugate Numerical Simulation." In ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2003.
Full textMamaev, B. I., M. M. Petukhovsky, and A. V. Pozdnyakov. "Shrouding the First Blade of High Temperature Turbines." In ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2001.
Full textLedezma, G. A., J. Allen, and R. S. Bunker. "An Experimental and Numerical Investigation Into the Effects of Squealer Blade Tip Modifications on Aerodynamic Performance." In ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2004.
Full textBachschmid, Nicolò, Emanuel Pesatori, Simone Bistolfi, and Massimiliano Sanvito. "Building Up Suitable Contact Forces in Integrally Shrouded Blade Rows for Reducing Vibration Amplitudes." In ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2005.
Full textYan, Xin, Lijie Lei, Jun Li, and Zhenping Feng. "Effect of Bending and Mushrooming Damages on Heat Transfer Characteristic in Labyrinth Seals." In ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2012.
Full textReports on the topic "Turbine blade"
Bernstein. L51797 Life Management of the RB211-24C Gas Turbine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 1998. http://dx.doi.org/10.55274/r0010427.
Full textYouchison, Dennis L., and Michail A. Gallis. High efficiency turbine blade coatings. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1177057.
Full textSmith, Kevin J., and Dayton A. Griffin. Supersized Wind Turbine Blade Study: R&D Pathways for Supersized Wind Turbine Blades. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1498695.
Full textCao, Yiding. An Innovative Turbine Blade Cooling Technology and Micro/Miniature Heat Pipes for Turbine Blades. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada381455.
Full textKorjack, T. A. A Twisted Turbine Blade Analysis for a Gas Turbine Engine. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada329581.
Full textGage, Bill, Ryan Beach, and Scott Hughes. Laboratory Wind Turbine Blade Static Testing of the Sandia National Rotor Testbed 13-Meter Wind Turbine Blade. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1823763.
Full textASHWILL, THOMAS D. Parametric Study for Large Wind Turbine Blades: WindPACT Blade System Design Studies. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/801402.
Full textBortolotti, Pietro, Derek S. Berry, Robynne Murray, Evan Gaertner, Dale S. Jenne, Rick R. Damiani, Garrett E. Barter, and Katherine L. Dykes. A Detailed Wind Turbine Blade Cost Model. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1529217.
Full textGutman, M. J. Turbine Blade Data Acquisition System Technical Reference. Fort Belvoir, VA: Defense Technical Information Center, May 1989. http://dx.doi.org/10.21236/ada215135.
Full textLuttges, Marvin W., Mark S. Miller, Michael C. Robinson, Derek E. Shipley, and Teresa S. Young. Wind Turbine Blade Aerodynamics: The Combined Experiment. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10177824.
Full text