To see the other types of publications on this topic, follow the link: Turbine blade.

Journal articles on the topic 'Turbine blade'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Turbine blade.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Xing, Zhitai, Yan Jia, Lei Zhang, Xiaowen Song, Yanfeng Zhang, Jianxin Wu, Zekun Wang, Jicai Guo, and Qingan Li. "Research on Wind Turbine Blade Damage Fault Diagnosis Based on GH Bladed." Journal of Marine Science and Engineering 11, no. 6 (May 26, 2023): 1126. http://dx.doi.org/10.3390/jmse11061126.

Full text
Abstract:
With the increasing installed capacity of wind turbines, ensuring the safe operation of wind turbines is of great significance. However, the failure of wind turbines is still a severe problem, especially as blade damage can cause serious harm. To detect blade damage in time and prevent the accumulation of microdamage of blades evolving into severe injury, a damage dataset based on GH Bladed simulation of blade damage is proposed. Then, based on the wavelet packet analysis theory method, the MATLAB software can automatically analyze and extract the energy characteristics of the signal to identify the damage. Finally, the GH Bladed simulation software and MATLAB software are combined for fault diagnosis analysis. The results show that the proposed method based on GH Bladed to simulate blade damage and wavelet packet analysis can extract damage characteristics and identify single-unit damage, multiple-unit damage, and different degrees of damage. This method can quickly and effectively judge the damage to wind turbine blades; it provides a basis for further research on wind turbine blade damage fault diagnosis.
APA, Harvard, Vancouver, ISO, and other styles
2

Wijaya, Rudi Kusuma, and Iwan Kurniawan. "Study Experimental Darrieus Type-H Water Turbines Using NACA 2415 Standard Hydrofoil Blade." Jurnal Pendidikan Teknik Mesin Undiksha 9, no. 2 (August 31, 2021): 109–23. http://dx.doi.org/10.23887/jptm.v9i2.29257.

Full text
Abstract:
Telah dilakukan kaji eksperimental turbin air Darrieus tipe-H menggunakan blade hydrofoil standar NACA 2415 untuk mengetahui nilai torsi statik dan dinamik yang dihasilkan turbin air Darrieus tipe-H 3 blade dan 6 blade, pengujian menggunakan water tunnel dimensi 6m x 0.6m x 1m. Variasi tiga blade dan enam blade, dengan diameter turbin 0.44 m x 0.15 m pada turbin luar dan 0.18 x 0.14 m pada turbin bagian dalam, panjang chord 0.10 m dengan variasi sudut serang 0º sampai dengan 360º, variasi kecepatan air pertama 0.3 m/s, variasi kecepatan aliran air kedua 0.65 m/s. Kecepatan air 0.3 m/s enam blade, torsi statik 0.3 Nm, torsi dinamik nya 0.384 Nm, kecepatan air 0,65 m/s torsi dinamik 0.432 Nm dan torsi statik nya 0.384 Nm, pengujian turbin Darrieus tiga blade kecepatan air 0,3 m/s nilai torsi dinamik 0.336 Nm dan dengan kecepatan yang sama torsi statik nya 0.264 Nm. Pada kecepatan air 0.65 m/s nilai torsi dinamik sebesar 0.384 Nm, dan nilai torsi statik 0.336 Nm. Dari data hasil pengukuran tersebut dapat disimpulkan bahwa variasi turbin enam blade memiliki nilai torsi statik dan torsi dinamik yang lebih tinggi dari pada turbin tiga blade, jumlah blade sangat berpengaruh terhadap daya serap energi kinetik air untuk di konversikan menjadi torsi statik maupun torsi dinamik.Kata kunci : Turbin Hydrokinetic, Darrieus, Torsi Statik,Torsi DinamikAn experimental study of the H-type Darrieus water turbine was carried out using a standard NACA 2415 hydrofoil blade to determine the value of static and dynamic torque generated by the 3-blade and 6-blade Darrieus H-type water turbine, testing using a water tunnel dimensions of 6m x 0.6m x 1m. Variation of three blades and six blades, with a turbine diameter of 0.44 mx 0.15 m on the outer turbine and 0.18 x 0.14 m on the inner turbine, chord length 0.10 m with variations in angle of attack 0º to 360º, variation of first water velocity 0.3 m / s second water flow velocity 0.65 m / s. Water velocity 0.3 m / s six blades, static torque 0.3 Nm, dynamic torque 0.384 Nm, water velocity 0.65 m / s dynamic torque 0.432 Nm and static torque 0.384 Nm, Darrieus three blade turbine test water speed 0.3 m / s dynamic torque value of 0.336 Nm and with the same speed its static torque is 0.264 Nm. At 0.65 m / s water velocity, the dynamic torque value is 0.384 Nm, and the static torque value is 0.336 Nm. From the measurement data, it can be concluded that the six-blade turbine variation has a higher value of static torque and dynamic torque than the three-blade turbine, the number of blades greatly influences the absorption of water kinetic energy to be converted into static torque and dynamic torque. Keywords: Hydrokinetic Turbine, Darrieus, static torque, dynamic torqueDAFTAR RUJUKANKirke, B.K. (2011). Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines, 36, pp.3013-3022Dominy, R., Lunt, P., Bickerdyke A., Dominy, J. (2007). Self-starting capability of a Darrieus turbine. Proc Inst Mech Eng (IMechE) ePart A: J Power Energy ;221: 111-120Decoste, Josh. (2004). Self-Starting Darrieus Wind Turbine. Department of Mechanical Engineering, Dalhousie University.Febrianto, A., & Santoso, A. (2016). “Analisa Perbandingan Torsi Dan rpm Tipe Darrieus Terhadap Efisiensi Turbin”. Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS)Febriyanto, N. (2014). “Studi Perbandingan Karakteristik Airfoil NACA 0012 Dengan NACA 2410 Terhadap Koefisien Lift dan Koefisien Drag Pada Berbagai Variasi Sudut Serang Dengan CFD” Fakultas teknik, Universitas Muhammadiyah SurakartaSaputra, G. (2016). Kaji Eksperimental Turbin Angin Darrieus-H Dengan Bilah Tipe NACA 2415. Universitas Riau, JOM Teknik Mesin vol. 3 No. 1.Hafied, B. (2018). Kaji Eksperimental Torsi Statik Dan Torsi Dinamik Hidrokinetik Turbin Savonius Single Stage Type Bach Tiga Sudu. Tugas Akhir Teknik Mesin. Fakultas Teknik Universitas Riau.Hau, E. (2005). Wind Turbines: Fundamentals, Technologies, Aplication, Economics. Springer. Berlin.Kaprawi. (2011), Pengaruh Geometri Blade Dari Turbin Air Darrieus Terhadap Kinerjany. Prosiding Seminar Nasional AVoER ke-3 PalembangKhan, M. J., Bhuyan, G., Iqbal M. T., & Quaicoe J.E. (2009). Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal: Applications A Technology Status Review. Applied Energy, 86, 1823-1835.Lain, S., & Osario, C. (2010). Simulation and Evaluation of a Sraight Bladed Darrieus Type Cross Flow Marine Turbine. Journal of Scientific & Research, Vol. 69 p.906-912Marizka, L. D. (2010). Analisis Kinerja Turbin Hydrokinetic Poros Vertical Dengan Modifikasi Rotor Savonius L Untuk Optimasi Kinerja Turbin. Tugas Akhir Sains Fisika. FMIPA-Universitas Sebelas Maret.Malge, P. (2015).Analysis of Lift and Drag Forces at Different Azimuth Angle of Innovative Vertical Axis Wind Turbine.International Journal of Energy Engineering 4(5-8).Teja, P., D. (2017). Studi Numerik Turbin Angin Darrieus – Savonius Dengan Penambahan Stage Rotor Darrieus. Institut Teknologi Sepuluh Nopember, Surabaya.Zobaa, A. F., & Bansal, R. C. (2011). Handbook of Renewable Energy Technology. USA: World Scientific Publishing Co. Pte. Ltd.
APA, Harvard, Vancouver, ISO, and other styles
3

Jamal, Jamal. "Pengaruh Jumlah Sudu Terhadap Kinerja Turbin Savonius." INTEK: Jurnal Penelitian 6, no. 1 (May 25, 2019): 64. http://dx.doi.org/10.31963/intek.v6i1.1127.

Full text
Abstract:
Savonius wind turbines are wind turbines that canoperate at low wind speeds, this type of turbine is very suitable tobe used in several places in Indonesia. The research aims toimprove the performance of the Savonius wind turbine withvariations in the number of turbine blades as well as variations inthe velocity of wind speed. The research method wasexperimental where wind turbine testing was carried out withvariations in the number of turbine blades with number of 2, 3and 4 blades, other variations carried out were wind speed at 3.5;4,5; 5.5 and 6.5 m/s. The study results show that the 2-bladeturbine produces greater rotation, but the torque moment islower than the 3 and 4 blade turbines, this can be seen in the lowefficiency of the 2 blade turbine at low wind speeds with highloading. At 3.5 m / s wind turbines 2 blade turbines haveefficiency that tends to be the same as 3 and 4 blade turbines upto 0.5 N but at loads of 0.6 - 1.2 N 2 blade turbines have lowerefficiency, while at wind speeds of 4.5 - 6.5 m / s 2 blade turbineshave greater efficiency than turbines 3 and 4 blades up to a loadof 1.2 N but if the load is added then the efficiency of 2-bladeturbines can be smaller than efficiency 3 and 4-blade.
APA, Harvard, Vancouver, ISO, and other styles
4

Cao, Kathy, Kelsey Shaler, and Nick Johnson. "Comparing wind turbine aeroelastic response predictions for turbines with increasingly flexible blades." Journal of Physics: Conference Series 2265, no. 3 (May 1, 2022): 032025. http://dx.doi.org/10.1088/1742-6596/2265/3/032025.

Full text
Abstract:
Abstract Highly flexible blades are becoming more prevalent designs as a potential solution to the transportation challenges associated with large-scale wind turbine rotors. However, there is currently no quantitative definition of “highly flexible” blades. To further develop turbines with highly flexible blades, a precise definition of the term and accurate simulations of turbines with such blades are required. Assumptions made in the traditional aerodynamic model, Blade Element Momentum (BEM) theory, are violated in turbines with flexible blades. However, Free Vortex Wake (FVW) methods can more accurately model these turbine designs. Though more computationally expensive than BEM, FVW methods are still computationally tractable for use in iterative turbine design. The purpose of this work was to determine the blade flexibility at which BEM and FVW methods begin to produce diverging aeroelastic response results. This was accomplished by simulating the BAR-DRC reference turbine with increasingly flexible blades in a range of steady, uniform inflow conditions using OpenFAST, the National Renewable Energy Laboratory’s physics-based turbine engineering tool. Blade-tip deflections confirmed that BEM and FVW results diverge as blade flexibility increases. For the 212 m rotor diameter turbine used in this study, the two methods largely agreed for smaller blade deflections. But their results differed by an average of 5% when the out-of-plane blade-tip deflections exceeded 5% of the blade length and in-plane blade-tip deflections exceeded 1.25% of the blade length, with percent differences approaching 25% at the largest deflections.
APA, Harvard, Vancouver, ISO, and other styles
5

Alipour, Ramin, Roozbeh Alipour, Seyed Saeid Rahimian Koloor, Michal Petrů, and Seyed Alireza Ghazanfari. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine." Sustainability 12, no. 15 (July 24, 2020): 5985. http://dx.doi.org/10.3390/su12155985.

Full text
Abstract:
The blade number of a current tidal turbine is one of the essential parameters to increase the stability, performance and efficiency for converting tidal current energy into rotational energy to generate electricity. This research attempts to investigate the effect of blade number on the performance of a small-scale horizontal tidal current turbine in the case of torque, thrust coefficient and power coefficient. Towards this end and according to the blade element momentum theory, three different turbines, i.e., two, three and four-bladed, were modeled using Solidworks software based on S-814 airfoil and then exported to the ANSYS-FLUENT for computational flow dynamics (CFD) analysis. SST-K-ω turbulence model was used to predict the turbulence behavior and several simulations were conducted at 2 ≤ tip speed ratio ≤ 7. Pressure contours, turbulence kinetic energy contours, cut-in-speed-curves, and streamlines around the blades and rotors were extracted and compared to provide an ability for a deep discussion on the turbine performance. The results show that in the case of obtainable power, the optimal value of tip speed ratio is around 5, so that the maximum power was achieved for the four-bladed turbine. Out of optimal condition, higher blade number and lower blade number turbines should be used at less than and greater than the optimal values of tip speed ratio, respectively. The results of simulations for the three-bladed turbine were validated against the experimental data with good agreement.
APA, Harvard, Vancouver, ISO, and other styles
6

McNerney, G. M., C. P. van Dam, and D. T. Yen-Nakafuji. "Blade-Wake Interaction Noise for Turbines With Downwind Rotors." Journal of Solar Energy Engineering 125, no. 4 (November 1, 2003): 497–505. http://dx.doi.org/10.1115/1.1627830.

Full text
Abstract:
The interaction between the rotor and the tower wake is an important source of noise for wind turbines with downwind rotors. The tower wake modifies the dynamic pressure and the local flow incidence angle as seen by the blades and, hence, modifies the aerodynamic loading of the blade during blade passage. The resulting n per revolution fluctuation in the blade loading (where n is the number of blades) is the source of low frequency but potentially high amplitude sound levels. The Wind Turbine Company (WTC) Proof of Concept 250 kW (POC) wind turbine has been observed by field personnel to produce low-frequency emissions at the National Wind Technology Center (NWTC) site during specific atmospheric conditions. Consequently, WTC is conducting a three-phase program to characterize the low frequency emissions of its two-bladed wind turbines and to develop noise mitigation techniques if needed. This paper summarizes the first phase of this program including recent low-frequency noise measurements conducted on the WTC POC250 kW wind turbine, a review of the wake characteristics of circular towers as they pertain to the blade-wake interaction problem, and techniques to attenuate the sound pressure levels caused by the blade-wake interaction.
APA, Harvard, Vancouver, ISO, and other styles
7

Peczkis, Grzegorz, Piotr Wiśniewski, and Andriy Zahorulko. "Experimental and Numerical Studies on the Influence of Blade Number in a Small Water Turbine." Energies 14, no. 9 (May 2, 2021): 2604. http://dx.doi.org/10.3390/en14092604.

Full text
Abstract:
This paper demonstrates the procedure of blade adjustment in a Kaplan-type water turbine, based on calculations of the flow system. The geometrical adjustment of a twisted blade with varying chord length is described in the study. Computational fluid dynamics (CFD) analysis was used to characterise aerofoil and turbine performance. Furthermore, two turbines, with a different number of blades, were designed, manufactured, and tested experimentally. The numerical model results were then compared with the experimental data. The studies were carried out with different rotational velocities and different stator blade incidence angles. The paper shows a comparison of the turbine efficiencies that were assessed, using numerical and experimental methods, of a flow system with four- and five-bladed rotors. The numerical model results matched up well with those of the experimental study. The efficiency of the proposed turbines reached up to 72% and 84% for four-bladed and five-bladed designs, respectively. These efficiencies, when considered with the turbine’s simplicity, low production and maintenance costs, as well as their potential for harvesting energy from low energy flows, mean that Kaplan turbines provide a promising technology for processing renewable energy.
APA, Harvard, Vancouver, ISO, and other styles
8

Sahin, M., and T. Farsadi. "Effects of Atmospheric Icing on Performance of Controlled Wind Turbine." IOP Conference Series: Earth and Environmental Science 1121, no. 1 (December 1, 2022): 012011. http://dx.doi.org/10.1088/1755-1315/1121/1/012011.

Full text
Abstract:
Abstract Icing deteriorates the performance of wind turbine rotors by changing the blade airfoils’ shapes. It decreases the lift, increases the drag, and subsequently causes power production losses and load increase on turbines’ structures. In the present study, the effects of atmospheric icing on the performance of a controlled large-scale wind turbine is estimated through simulations. To achieve the target, the MS (Mustafa Sahin) Bladed Wind Turbine Simulation Model is used for the analyses of the National Renewable Energy Laboratory (NREL) 5 MW turbine with and without iced blades. Icing modeling is realized based on its main characteristics and its effects on blade aerodynamics. Turbine performance estimations are carried out at various uniform wind speeds between cut-in and cut-out wind speeds and are presented in terms of various turbine parameters such as power, thrust force, blade pitch angle, and rotor speed. Simulation evaluations show that even a light ice accretion along the blades varies the turbine characteristics and dynamics, changes the cut-in and rated wind speeds, and affects the aforementioned turbine parameters differently in the below and above rated regions.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Xiao, and Maosheng Zheng. "Numerical Simulation of Fluid-Structure Coupling for a Multi-Blade Vertical-Axis Wind Turbine." Applied Sciences 13, no. 15 (July 26, 2023): 8612. http://dx.doi.org/10.3390/app13158612.

Full text
Abstract:
The aerodynamic characteristics of the vertical-axis wind turbine with three, four, five, and six blades are studied numerically. A coupling model of fluid flow and solid turbine blade is established to model the interactions between air and wind turbine. The pressure distribution and blade deformation affected by air are obtained and discussed. For the four wind turbines with different numbers of blades, the maximum pressure in the entire machine structure occurs at the variable angle position of the blades in the windward region under the same wind speed. Mainly due to the rapid airflow variation, complex turbulence, and significant influence of the wind field on the blades in this position, this part of the blades is prone to bending or damage. Under identical external wind field conditions, wind turbines with four and six blades exhibit significantly higher equivalent pressures on their surfaces compared to those with five and three blades. The maximum equivalent pressure of six blades can reach 3.161 × 106 Pa. The maximum deformation of the blade basically occurs at the tip and four sides of the blade. The six-blade wind turbines withstand higher and non-uniform surface pressures on their blades, resulting in the largest deformation of up to 11.658 mm. On the other hand, the four-blade wind turbine exhibits the smallest deformation. The above conclusions provide theoretical guidance for the design and optimization of vertical-axis wind turbines.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Kun Nan, and Wei Hsin Gau. "Structural Optimization on Composite Blades of Large-Scale Wind Turbines." Applied Mechanics and Materials 284-287 (January 2013): 958–62. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.958.

Full text
Abstract:
Turbine blades used in large-scale, horizontal-axis wind turbines are usually made from composite materials to reduce the weight while attaining a reasonable strength to weight ratio. The design of large wind turbine blades must consider both their aerodynamic efficiency and structural robustness. This paper presents an optimum design scheme for composite wind turbine blades. The first optimization phase produces the aerodynamic outer shape of a blade framed by airfoils with optimum cord lengths and twist angles along the blade spanwise direction. The second phase provides optimal material distribution for the composite blade. Loadings on the blade are simulated using wind field and wind turbine dynamics codes. The maximum loads on the turbine blade are then extracted and applied to a parameterized finite element model. A design example of a 3 MW wind turbine blade considering one critical load case with a mean wind speed of 25 m/s is demonstrated. The optimization result shows that although the initial blade model is an infeasible design, the optimization process eventually converges to a feasible solution with an optimized mass of 8750.2 kg.
APA, Harvard, Vancouver, ISO, and other styles
11

Xu, Lijun, Lei Xu, Lei Zhang, and Ke Yang. "Design of Wind Turbine Blade with Thick Airfoils and Flatback and its Aerodynamic Characteristic." Open Mechanical Engineering Journal 9, no. 1 (October 7, 2015): 910–15. http://dx.doi.org/10.2174/1874155x01509010910.

Full text
Abstract:
large-scaled blade has posed many problems related to design and production. After introducing the features of blade with thick airfoils and flatback, based on relevant parameters of Huaren 100 kW wind turbine, the paper designed blade with thick airfoils and flatback, introduced blade parameter design, and analyzed the aerodynamic performance of blades using GH bladed software, obtaining the relationship between power output of wind turbine with blade tip speed ratio Cp. Furthermore, it analyzed the aerodynamic performance of original design blades, modified blades and Huaren 100 kW blades, and assessed the aerodynamic performance of modified blade.
APA, Harvard, Vancouver, ISO, and other styles
12

Pribadyo, Pribadyo, Hadiyanto H, and Jamari J. "Simulasi Performa Turbin Propeller Dengan Sudut Pitch Yang Divariasikan." Jurnal Mekanova: Mekanikal, Inovasi dan Teknologi 6, no. 1 (June 11, 2020): 54. http://dx.doi.org/10.35308/jmkn.v6i1.2257.

Full text
Abstract:
Propeller turbine performance can be improved by changing the turbine design parameters. One method that was developed is to vary the blade angle on the runner's blades. Analysis of the influence of blade angle on propeller turbine performance is done through numerical simulations based on computational fluid dynamics. The simulation is done with variations of propeller turbine blade angles of 180, 230, and 280 at flow rates of 0.08 m/s to 0.5 m/s. Simulation results show turbines with 250 blade angles have the best performance compared to turbine blade angles of 230 and 280. While the turbine blade angles of 230 tend to have higher performance compared to angles of 280 even though both have peak values for the corresponding power coefficient. Keywords—Propeller turbine, runner blade, pitch angle, CFD simulation
APA, Harvard, Vancouver, ISO, and other styles
13

Nawir, Herman, Muhammad Ruswandi Djalal, Adnan Ainun Hasri, and Andi Wely Fauziah. "Modification of the Vertical Axis with Variations in the Number of Blades of the Savonius Wind Turbine." Journal of Advanced Technology and Multidiscipline 2, no. 1 (May 31, 2023): 1–9. http://dx.doi.org/10.20473/jatm.v2i1.40610.

Full text
Abstract:
The potential wind speed in Indonesia is generally low at 3 m/s to 7 m/s so that this type of vertical axis turbine is considered very suitable for use in wind conditions in Indonesia. There are several types of vertical axis wind turbines. One type of vertical axis wind turbine is the Savonius wind turbine. Many advantages that this type of wind turbine has, such as being able to receive wind from all directions, easy and cheap to manufacture, and can rotate at a fairly low angular speed. This test was carried out to determine the performance of conventional and modified savonius turbines with 2 and 3 blades variables in each turbine blade shape. The form of modification made is by changing the shape of the blade twisting by 45o. The turbine is carried out on a laboratory scale with a wind source using a fan that is directly opposite the turbine. The results showed that the highest turbine power occurred in a modified 2-blade turbine, namely 1.88 Watt with a torque value of 0.04 Nm and a shaft rotation of 450 rpm. The highest rotation value is also obtained by 2 modified blades at a wind speed of 6 m/s producing 896 rpm. However, the highest torque value is obtained by a conventional 2-blade turbine with a value of 0.136 Nm. The highest turbine efficiency in each turbine is obtained by a modified 2 blade turbine with an efficiency value of 36.92% while the highest turbine efficiency for a modified 3 blade turbine reaches 11.69% which is considered less efficient than other turbines.
APA, Harvard, Vancouver, ISO, and other styles
14

Bashir Isyaku Kunya, Bala Abdullahi, and Najib Aminu Ismail. "Investigation on the Performance of Micro Wind Turbine Rotor Using Whale-Inspired Blade Based on Low Wind Regime." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 101, no. 2 (January 20, 2023): 184–96. http://dx.doi.org/10.37934/arfmts.101.2.184196.

Full text
Abstract:
The potential of wind energy in a country varies depending on the region. For example, in Northern regions of Nigeria, cities like Minna, Sokoto, Kano and Jos are the most potential locations and experience not more than 5.24 m/s mean wind speed with Jos having the highest average wind speed. In most cases internationally wind turbines are design to operate at the rated wind speed much greater than mean wind speeds in Nigeria (in most cases above 8 m/s). Installation of these wind turbines in a similar location to Nigeria (in terms of wind speed condition) will significantly decrease their performance. Therefore, it become necessary to design and produce wind turbines that will function efficiently in low wind speed locations. One of the technologies to improve wind turbine rotor blade effectiveness in low wind regime is to boost the operating angle of the wind turbine, and hence the prospect for the improvement of wind turbine performance. An innovative way recognized previously by some researchers for increasing the working angle of the blade at low wind speed for improved performance is modification of wind turbine blade leading edge. This research studied three-bladed wind turbine rotor with modified blades leading edges (by incorporating sinusoidal bumps) at low wind speeds using CFD method. Two CAD models of wind turbine blades based on 0.8m three-bladed wind turbine rotor were modelled and simulated. One blade model is having straight leading edge (N-Blade) and the other having bumpy leading edge (M-Blade). Both models have NASA LS (1)-0413 cross-section profile. Simulations were run using ANSYS 20 from a velocity of 2 m/s to 10 m/s at the interval of 2m/s considering TSR of 6 and 8. At a TSR of 6, the coefficients of performance (Cp) values are not equal, with the straight blade having better performance than the bumpy blade at all velocities tested; the Cp values of blade with straight leading edge are 0.180, 0.267, 0.300, 0.313, 0.322 at respective velocities of 2, 4, 6, 8, and 10m/s, while Cp values of blade with bumpy leading edge at the same velocities are 0.165, 0.250, 0.281, 0.294, and 0.303 respectively. At a TSR of 8, the CP values closely match for both straight and bumpy blade at all velocities tested for. Simulations were further run at constant angular velocity of 120 rad/s for a TSR of 2, 4, and 10, where the peak performance occurs is around TSR of 6 and 8. For instance, the Cp values of M-Blade are 0.022, 0.173, 0.294, 0.313, and 0.116 respectively at the TSR of 2, 4, 6, 8, and 10. At TSR of 2, 4, 8 and 10, the performance of both airfoils closely matches except at a TSR of 6 where the N-Blade Cp value is 0.313 and is better than that of M-Blade Cp value (0.294). It shows that the blade leading edge modification could not have advantage at all flow conditions and size of the HAWT blades; it shows no advantage on the performance of the rotor blade tested in this research at the velocities at which the simulation was conducted.
APA, Harvard, Vancouver, ISO, and other styles
15

Winarto, Eko Wismo, Sugiyanto Sugiyanto, Soeadgihardo Siswantoro, and Isworo Djati. "Turbin Hibrid Bi-Directional Sebagai Pemanen Energi pada Thermoacoustic Engine." Jurnal Rekayasa Mesin 12, no. 1 (May 31, 2021): 19. http://dx.doi.org/10.21776/ub.jrm.2021.012.01.3.

Full text
Abstract:
Bi-directional turbines that are commonly applied to convert wave energy into motion energy are the types of Impulse turbines and Wells turbines. Both types of turbines each have advantages and disadvantages. In this research, hybrid turbine type is designed and made to bridge the weaknesses in impulse turbine and turbine wells. Hybrid turbines are made by placing impulse turbines on the outside while turbine wells placed on the inside. In this research, the variation of hybrid bi-directional turbine design aims to find out the most optimal design of this turbine type. Six variations were carried out including a hub to tip ratio of 0.5 with 4 and 5 Wells blades, a hub to tip ratio of 0.6 with 4 and 5 Wells blades, and a hub to tip ratio of 0.7 with 4 and 5 Wells blades. From the test results on thermoacoustic engine media, based on the hub to tip ratio, the most optimal hub to tip ratio is in the order of 0.7 then 0.6, and 0.5. Whereas based on the number of Wells blade, obtained the number of Wells blade 5 is more optimal than the number of Wells blade 4.
APA, Harvard, Vancouver, ISO, and other styles
16

Shah, Imran, Abdullah Khan, Muhsin Ali, Sana Shahab, Shahid Aziz, Muhammad Adnan Aslam Noon, and Javed Ahmad Khan Tipu. "Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life." Materials 16, no. 13 (July 3, 2023): 4804. http://dx.doi.org/10.3390/ma16134804.

Full text
Abstract:
Horizontal-axis wind turbines are the most popular wind machines in operation today. These turbines employ aerodynamic blades that may be oriented either upward or downward. HAWTs are the most common non-conventional source of energy generation. These turbine blades fail mostly due to fatigue, as a large centrifugal force acts on them at high rotational speeds. This study aims to increase a turbine’s service life by improving the turbine blades’ fatigue life. Predicting the fatigue life and the design of the turbine blade considers the maximum wind speed range. SolidWorks, a CAD program, is used to create a wind turbine blade utilizing NACA profile S814. The wind turbine blade’s fatigue life is calculated using Morrow’s equation. A turbine blade will eventually wear out due to several forces operating on it. Ansys software is used to analyze these stresses using the finite element method. The fatigue study of wind turbine blades is described in this research paper. To increase a turbine blade’s fatigue life, this research study focuses on design optimization. Based on the foregoing characteristics, an improved turbine blade design with a longer fatigue life than the original one is intended in this study. The primary fatigue parameters are the length of a chord twist angle and blade length. The experimental data computed with the aid of a fatigue testing machine are also used to validate the numerical results, and it is found that they are very similar to one another. By creating the most effective turbine blades with the longest fatigue life, this research study can be developed further. The most effective turbine blades with the longest fatigue life can be designed to further this research investigation.
APA, Harvard, Vancouver, ISO, and other styles
17

Xu, Zhi Qiang, and Jian Huang. "Research on Wind Turbine Blade Loads and Dynamics Factors." Advanced Materials Research 1014 (July 2014): 124–27. http://dx.doi.org/10.4028/www.scientific.net/amr.1014.124.

Full text
Abstract:
Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.
APA, Harvard, Vancouver, ISO, and other styles
18

Saowalak Thongdee, Churat Tararuk, Natthawud Dussadee, Rameshprabu Ramaraj, and Tanate Chaichana. "Study on performance of a savonius wind turbines related with the blade angle." Maejo International Journal of Energy and Environmental Communication 1, no. 2 (August 9, 2019): 32–36. http://dx.doi.org/10.54279/mijeec.v1i2.244916.

Full text
Abstract:
This research aimed to compare the performance of Savonius vertical axis wind turbines through blade numbers and different blade angles. In this study, applicable turbines having 4, 6, 8, 12, 16 and 18 numbers of blades with the angles of the blades of -15°, -5°, 0°, 5° and 15°, respectively. The rotor used was a semicircle shaped blade made from PVC material and has a blade diameter of 6 cm and 30 cm for both rotor diameter and height. The turbine was tested deadweight range of 0-0.49 kg at 4 m/s wind speed. The results showed that the blade angle has a positive effect on increasing the power and torque coefficient of Savonius wind turbine, specifically on blades less than 16. The highest power and torque coefficient was obtained from the turbine having16 blades at an angle of 5°. This configuration also found that the maximum power and torque coefficient in the tip speed ratio ranging from 0.3-0.4 are 0.2519 and 0.5858, respectively.
APA, Harvard, Vancouver, ISO, and other styles
19

Boedi, Silvy Dollorossa, Josephine Sundah, Meidy Kawulur, and Franklin Bawano. "Design and Construction of Kinetic Turbine External Hinged Blade as A Picohydro Scale Power Plant." International Journal of Innovative Technology and Exploring Engineering 12, no. 1 (December 30, 2022): 43–47. http://dx.doi.org/10.35940/ijitee.a9367.1212122.

Full text
Abstract:
The problem of energy shortage is still a global problem which is especially felt in developing countries whose residents live in villages, which still require the development of more efficient energy sources. Limited fossil fuels make water energy the best energy option. The problem of meeting the availability of electricity in rural areas by utilizing water energy as new and renewable energy is a long-term goal in this research. The current research on kinetic turbines is a combination of two types of waterwheels, which have a vertical axis (overshot and swell turbines). The vertical shaft is made so that the generator is easier to install and all the blades get a boost in the flow of water. Most water turbines have fixed blades. In this research, the target of the novelty is a kinetic turbine with a vertical shaft which has a hinged blade. Hinged blades are blades that can move when the flow of water hits the blades, so that on one side of the turbine it will reduce the negative torque and on the other hand it will increase the rotation of the turbine. The results of the research that became the target, namely, obtained a turbine design that has more optimal turbine power and efficiency, compared to a turbine that has a fixed blade, so that this externally hinged blade kinetic turbine can contribute to the provision of rural electrical energy. This research method is an experiment by doing independent variations on the number of blades, and blade 10 has an optimum power value of 59.01 Watt.
APA, Harvard, Vancouver, ISO, and other styles
20

Masykur, Masykur, Andre Kurniadi, Maidi Saputra, and Murhaban Murhaban. "Studi Numerik Pengaruh Sudut Kemiringan Sudu Terhadap Performa Turbin Angin Vertikal Tipe Savonius." Jurnal Mekanova: Mekanikal, Inovasi dan Teknologi 7, no. 1 (June 4, 2021): 25. http://dx.doi.org/10.35308/jmkn.v7i1.3634.

Full text
Abstract:
AbstractWind energy is a renewable energy source that can be felt in everyday life. To convert wind energy into electrical energy, a tool is needed that is a wind turbine. Horizontal Axis Wind Turbine is more widely used and developed today than the vertical type wind turbine. However, the vertical turbine has several advantages compared to the horizontal wind turbine, which is that it can move without depending on the direction of the wind. This study aims to determine the effect of tilt angel of savonius turbine with blades angle 30°, 60° and 90° the turbine power coefficient and determine the optimal turbine blade results in designing a Vertical wind turbine by simulation using Computational Fluid Dynamics (CFD). The variations used are tilt angel turbine blades is 30°, 60°, 90°. The results showed that the value of Cp (Power Coefficient) of wind turbines with the addition of the blade angel 30°, 60° and 90° had a different increase. The variation the addition of turbine blade tilt angle with 90° tilt angle can increase the efficiency of the turbine blade when compared 30°, 60° blade inclination this is evidenced by wind turbine speed contour analysis, wind vortex contour analysis and turbulence intensity contour analysis shows that the turbine blade simulation results with a slope of 90° has an efficient turbine blade that is very good and effective and get optimal results.Keywords: Wind turbine, VAWT, CFD, Efficiency, Contour, Optimal, TSR, power
APA, Harvard, Vancouver, ISO, and other styles
21

Buchner, Abel-John, Julio Soria, Damon Honnery, and Alexander J. Smits. "Dynamic stall in vertical axis wind turbines: scaling and topological considerations." Journal of Fluid Mechanics 841 (February 27, 2018): 746–66. http://dx.doi.org/10.1017/jfm.2018.112.

Full text
Abstract:
Vertical axis wind turbine blades are subject to rapid, cyclical variations in angle of attack and relative airspeed which can induce dynamic stall. This phenomenon poses an obstacle to the greater implementation of vertical axis wind turbines because dynamic stall can reduce turbine efficiency and induce structural vibrations and noise. This study seeks to provide a more comprehensive description of dynamic stall in vertical axis wind turbines, with an emphasis on understanding its parametric dependence and scaling behaviour. This problem is of practical relevance to vertical axis wind turbine design but the inherent coupling of the pitching and velocity scales in the blade kinematics makes this problem of more broad fundamental interest as well. Experiments are performed using particle image velocimetry in the vicinity of the blades of a straight-bladed gyromill-type vertical axis wind turbine at blade Reynolds numbers of between 50 000 and 140 000, tip speed ratios between $\unicode[STIX]{x1D706}=1$ to $\unicode[STIX]{x1D706}=5$, and dimensionless pitch rates of $0.10\leqslant K_{c}\leqslant 0.20$. The effect of these factors on the evolution, strength and timing of vortex shedding from the turbine blades is determined. It is found that tip speed ratio alone is insufficient to describe the circulation production and vortex shedding behaviour from vertical axis wind turbine blades, and a scaling incorporating the dimensionless pitch rate is proposed.
APA, Harvard, Vancouver, ISO, and other styles
22

Jha, Devashish, and Saket Saurabh. "NACA2412 airfoil based method for design and aerodynamic analysis of small HAWT using modified BEM approach." Science and Technology for Energy Transition 78 (2023): 2. http://dx.doi.org/10.2516/stet/2022023.

Full text
Abstract:
Efficient utilization of wind energy depends on careful selection and suitable design of Wind Turbine (WT) blades. Small scale Wind Turbines (SWT) normally operate in the low range of Angle of Attack (AoA). This makes the task even more difficult for designing and optimization of WT blades. This article deals with an airfoil based computational approach to design the blade for a standalone small scale Horizontal Axis Wind Turbine (HAWT). A procedure has been proposed to find the important parameters and analyze the performance characteristics for a three bladed HAWT operating under the wake rotation. Computational code has been written to find optimum blade profile. Twist angle variation, chord length and other related parameters are determined with the help of program. Comparison between different types of airfoil has been made to figure out the most suitable one. Airfoil selection and design approach are intended to make Wind Turbine blade efficient specially under low range of AoA. Characteristics of the Wind Turbine obtained analytically from this procedure are compared with several other reported earlier in some of the literatures. The result obtained by the proposed procedure is simpler and more efficient than BEM theory – a method normally employed for blade design.
APA, Harvard, Vancouver, ISO, and other styles
23

Abdul Alim, Muhammad Iyas. "Effect of Turbine Blades Transformation on Savonius Turbine Performance." Mekanika: Majalah Ilmiah Mekanika 21, no. 1 (April 14, 2022): 26. http://dx.doi.org/10.20961/mekanika.v21i1.48619.

Full text
Abstract:
<pre>The purpose of this study was to determine the effect of the transformation of savonius turbine blades using the Cp-TSR curve. The transformation referred to here is the change in the angular of the blade so that the area of the cross section of the blade moving downwind changes, by doing so the negative torque of the turbine obtained from the air flow is reduced. The specimen has 3 variations, namely, without transformation or conventional turbine and transformation of 5 and 10 degrees. With the reduction in the cross sectional area of the turbine blades, the authors hypothesize that the turbine performance will increase, but the blade transformation movement causes a shift in the center of mass which gives rise to vibrations that can directly affect turbine performance, and it could be that the negative effect from these vibrations is much greater than the positive effect from reducing torque. Experiments were carried out using wind tunnels with load variations at 5, 6, and 7 m/s speed variations. The experimental results obtained show that conventional turbines have better performance than turbines with 5</pre><sup>o</sup><pre> and 10</pre><sup>o</sup><pre> blade transformations.</pre>
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Qi, and Zhiying Gao. "Analysis of Influence of Pre-bend Blade Shape on Aeroelastic Characteristics of Wind Turbine Under Startup Condition." Journal of Physics: Conference Series 2569, no. 1 (August 1, 2023): 012029. http://dx.doi.org/10.1088/1742-6596/2569/1/012029.

Full text
Abstract:
Abstract In this paper, a 2 MW wind turbine in the laboratory is taken as the research object, and the blades with pre-bending capacities of 2, 3, 4, and 5 m are designed, respectively, to study the influence of different pre-bending capacities on the aerodynamic elasticity of wind turbine under unstable operating conditions. Based on the professional simulation software of wind turbine multi-body dynamics, the parametric model with aero-elastic-control coupling is established, and the simulation calculation of different pre-bending blades is carried out. The results show that the aerodynamic deformation of the blade and the load at the blade root increase obviously with the increase of blade pre-bending. Under the starting condition of a wind turbine, larger blade pre-bending will lead to a significant increase in aerodynamic deformation of wind turbine blades under unstable operating conditions. It shows that the larger blade pre-bending amount will greatly increase the risk of aeroelastic instability of wind turbines under unstable operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
25

Adithya, K., R. Girimurugan, M. Vairavel, M. Jawahar, K. Surya, M. Tamilselvan, and P. Thiyagarajan. "Structural and Thermal Research of Steam Turbine Blades by Finite Element Method." International Journal of Innovative Technology and Exploring Engineering 9, no. 5 (March 30, 2020): 2275–78. http://dx.doi.org/10.35940/ijitee.e2495.039520.

Full text
Abstract:
In most modern years, the dimensions and materials of the blades of steam turbines have increased by raising the power of steam turbines. In preference to the wide-ranging application of turbo machinery and constant improvement of steam turbine blade materials and design techniques, steam turbine blade design and material behavior study technology have turned out to be a significant following in the line of investigation field. The optimized design and material behavior are the most significant factors limiting the efficiency of steam turbines, which is associated with the operating effectiveness of the steam turbines. On the other hand, because of the complicated form and the maximal effects of material behavior, it is not easy to predict and examine the behavior of the turbine blades for different geometrical shapes and materials by both the systematic method and an engineering generalization scheme. The forecasted finite element analysis method offers an efficient means to resolve those complicated project analysis and material behavior challenges. It can be utilized to establish the distribution of stress and heat flux in the entire blade geometry caused by the coupling effect of thermal stress distribution and axial loads on the blade structure. Attempts have been made to match the optimized blade thickness of the steam turbine by utilizing Finite Element Analysis.
APA, Harvard, Vancouver, ISO, and other styles
26

Sucie, Elia, Dwi Anung Nindito, and Allan Restu Jaya. "Uji Eksperimental Pengaruh Konfigurasi Bilah Terhadap Performa Turbin Ventilator di Air." RekaRacana: Jurnal Teknil Sipil 8, no. 3 (February 1, 2023): 144. http://dx.doi.org/10.26760/rekaracana.v8i3.144.

Full text
Abstract:
ABSTRAKTeknologi turbin angin ventilator memiliki prinsip kerja yang hampir sama dengan turbin hidrokinetik yang berpenggerak aliran air. Density air yang lebih besar daripada angin menghasilkan power turbin yang lebih baik. Perbedaan density inilah yang menjadi alasan untuk mengembangkan turbin hidrokinetik dari turbin angin ventilator yang memiliki banyak bilah. Studi ini bertujuan untuk menguji performa turbin ventilator pada aliran air di saluran prismatik pada keadaan low head. Metode eksperimental digunakan untuk mengetahui performa turbin yang dihasilkan melalui perubahan distribusi kecepatan dan konfigurasi bilah. Hasil pengujian menghasilkan performa turbin ventilator yang beragam untuk masing-masing konfigurasi yang diamati. Penggunaan konfigurasi bilah secara penuh (lengkap) pada seluruh keliling turbin ventilator menghasilkan RPM dan torsi yang lebih tinggi daripada konfigurasi bilah 3/4 bagian maupun 1/2 bagian turbin ventilator. Gradien perubahan TSR terhadap yang paling optimal dihasilkan oleh turbin ventilator bilah penuh.Kata kunci: distribusi kecepatan aliran, konfigurasi bilah, turbin ventilator ABSTRACTTechnology of ventilator wind turbine has similar work principle to hydrokinetic turbine with water flow driven. Water density that is bigger than wind results better turbine power. This density difference becomes the reason to develop hydrokinetic turbine from ventilator wind turbine that has many blades. This study aimed to test the performance of ventilator turbine on water flow in prismatic channel during low head condition. Experimental method was used to find out turbine performance resulted through the change of flow velocity distribution and blade configuration. The testing result obtains various ventilator turbine performance for each observed configuration. The usage of full (complete) blade configuration in all surrounding of ventilator turbine produces higher RPM and torque compared to blade of 3/4 part or 1/2 part of ventilator turbine. Gradient of TSR change towards the most optimal one is produced by full blade ventilator turbine.Keywords: flow velocity distribution, blade configuration, ventilator turbine
APA, Harvard, Vancouver, ISO, and other styles
27

Tonadi, Een. "ANALISIS PENGARUH JUMLAH SUDU TERHADAP EFISIENSI TURBIN PELTON DENGAN TEKANAN KONSTAN." Teknosia 1, no. 1 (June 3, 2021): 36–42. http://dx.doi.org/10.33369/teknosia.v1i1.15390.

Full text
Abstract:
One of the renewable energy sources that can be used for electricity generation is the Pelton turbine. The purpose of this study was to determine the effect of the number of blades on the efficiency of a Pelton turbine with constant pressure. This research was conducted at the Unihaz mechanical engineering laboratory by varying the number of blades, namely 9 blade turbines and 12 blades. Tests were carried out by giving load gradually to the turbine until the turbine rotor rotation stopped rotating. The results show that in the turbine test with blades 9 the maximum rotation achieved is 698.2 rpm and the maximum rotor rotation is 714.5 rpm at blade 12. Likewise, the torque coefficient and power coefficient achieved by the turbine with 12 are greater when compared to the 9 blades. Meanwhile, the efficiency that can be achieved by turbines with 9 blades is 71% and at 12 blades is 79%. From this it can be concluded that the number of blades affects the rotation, torque coefficient, power coefficient and efficiency of the Pelton turbine with constant pressure.
APA, Harvard, Vancouver, ISO, and other styles
28

Molyakov, V. D., and B. A. Kunikeev. "Using the Similarity Theory in the Design of Gas Turbine Engines." Proceedings of Higher Educational Institutions. Маchine Building, no. 6 (735) (June 2021): 48–57. http://dx.doi.org/10.18698/0536-1044-2021-6-48-57.

Full text
Abstract:
At present, in the promising development of gas turbine engines compared to at least the fourth generation products, there have been significant changes in the approaches to the design of engine. First of all, it is an increase in maximum values of temperature, gas pressure and circumferential flow speeds, an increase in power of the turbine stage, as well as improvement of the turbine manufacturing technology. All these factors lead to the fact that when designing the flow parts of the gas turbine, it is necessary at the fixed design flow rate of the working medium in the engine, i.e. at the fixed diameters, lengths of the nozzle and rotor blades forming the outline of the inter-blade channels, to increase the blade chords with the corresponding reduction of the number of blades in the row. The increase in turbine stage power associated with the increase in temperature, pressure (density), and circumferential velocity increases the bending stresses leading to the need to increase chords at a fixed blade length. Significant reduction of number of blades in stages, simplifies technology of blades manufacturing. A substantial increase in the maximum gas temperature, in the perspective of more than 2000 K, also leads to the need to increase the blade chords, due to the need to place cooling cavities in the blades. As a result, contradictions arise with the use of similarity theory in the design of stages of turbines of different purpose, as some of the main requirements of similarity are violated — geometric similarity of blade channels of the flow part and then the use of the generally accepted number Re by the chord of blades loses meaning. Therefore, it is necessary to carry out detailed investigations of all flow parameters in four stages of turbines with detection of influence of change of rotor blade chords at equal length of blades. And justify the effect of change of rotor blade chords on physical processes in flow parts of turbines in engines of various purpose.
APA, Harvard, Vancouver, ISO, and other styles
29

Sharma, Chirag, Siddhant Kumar, Aanya Singh, Kartik R. Bhat Hire, Vedant Karnatak, Varun Pandey, Jeet Gupta, et al. "Comprehensive Review on Leading Edge Turbine Blade Cooling Technologies." International Journal of Heat and Technology 39, no. 2 (April 30, 2021): 403–16. http://dx.doi.org/10.18280/ijht.390209.

Full text
Abstract:
Developments in the gas turbine technology have caused widespread usage of the Turbomachines for power generation. With increase in the power demand and a drop in the availability of fuel, usage of turbines with higher efficiencies has become imperative. This is only possible with an increase in the turbine inlet temperature (TIT) of the gas. However, the higher limit of TIT is governed by the metallurgical boundary conditions set by the material used to manufacture the turbine blades. Hence, turbine blade cooling helps in drastically controlling the blade temperature of the turbine and allows a higher turbine inlet temperature. The blade could be cooled from the leading edge, from the entire surface of the blade or from the trailing edge. The various methods of blade cooling from leading edge and its comparative study were reviewed and summarized along with their advantages and disadvantages.
APA, Harvard, Vancouver, ISO, and other styles
30

Noor Zafirah Abu Bakar and Muhamad Hasbullah Padzillah. "Influence of Blade-Flow Interactions on Flow Behaviours and Blade Loading of an Automotive Mixed-Flow Turbine." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 105, no. 1 (June 1, 2023): 131–53. http://dx.doi.org/10.37934/arfmts.105.1.131153.

Full text
Abstract:
Mixed-flow turbine (MFT) is one type of turbines in automotive turbocharger. Multiple studies on turbine blades and flow interactions were done in this area but mainly focusing on structural responses and none on the fluid behaviours. The objectives of this paper are to compare and analyse the influence of blade-flow interactions on flow behaviours and blade loading at four MFT turbine operating conditions under steady state flow. Flow behaviours are indicated by appearances of secondary flows and blade loading is ratio of static pressure acting on turbine rotor blades over the total isentropic pressure at volute inlet. Blade loading represents capability of turbine blades to generate torque. Three validated simulations models using commercial software were developed, a non-coupled model and coupled models which consists of one-way and two-way coupled model. Non-coupled model assumes blades are rigid bodies and for coupled models, blades are deformable and share interfaces for interactions. Results show that there are differences in flow behaviours in non-coupled and coupled models that affect blade loading. Coupled models produce torque with range 1.33% to 0.60% lower than non-coupled model at most operating conditions. At 50% turbine design speed, average efficiency differences for non-coupled and coupled models to experiment data are 1.38% and 1.28% respectively. There is no significant difference in flow behaviours in one-way and two-way coupled models due to the stiffness of material of turbine blades is high but show minor differences in blade loading and torque.
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, Xiao Dong, Mei Ling Kuang, and Ya Ming Jiang. "Study of the Textile Composite Adaptive Blade of Small Wind Turbine." Advanced Materials Research 332-334 (September 2011): 828–32. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.828.

Full text
Abstract:
This paper is mainly to design the small wind turbine blades to make the wind turbines have automatic braking ability. This study has two main aspects, including choosing the reinforced materials and designing the structure of the blades. According to the fiber hybrid principle, carbon fibers are employed in the main stress area of the blades and other area using glass fiber. At the same time, Aramid fibers are mixed in every area of the blade in order to enhance the tenacity of the blade. The other work is designing the structure of the blade with big main body and small abdomen which twists easily. At the designed wind speed, the power output reaches its rated capacity. Above this wind speed, turbine blades twist to adapt to wind speed and make the rotor solidity of wind turbine declined. While the wind speed changes and becomes small, the torsion of wind turbines’ blades turns back. Thus the wind turbines’ rotor solidity becomes greater and power output increases. So at a certain speed ( 36m/s), the wind turbine can adjusts itself to control the power output keeps on a certain level. And then it brakes by itself.
APA, Harvard, Vancouver, ISO, and other styles
32

Irwansyah, Ridho, Warjito, Budiarso, Christopher Clement Rusli, and Sanjaya BS Nasution. "Analysing Hydraulic Efficiency of Water Vortex Pico-Hydro Turbine using Numerical Method." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 77, no. 2 (November 14, 2020): 91–101. http://dx.doi.org/10.37934/arfmts.77.2.91101.

Full text
Abstract:
To overcome the lack of rural electricity in Indonesia vortex pico-hydro turbines are used as an option solution. This is due to the ability of the vortex turbine to work in low head conditions effectively. This study is conducted with comparison of curved and straight blade to obtain a more optimum turbine performance. Two methods are carried out in this study, analytical and computational method. Analytical methods are used to determine blade geometry and its performance while computational methods are used to analyse internal flow of turbine. As a result, the study concludes that hydraulic efficiency of vortex turbine in this study doesn’t affect much between straight and curved blades. The hydraulic efficiency for those blades is around 0.63. In addition, the study continued by analysing the optimum location of the blade in the basin. The results of the study show that the optimum ratio of depth and diameter of the blade is 0.33 with turbine efficiency is 0.84. Thus, the location of the blades is more important than the type of blades.
APA, Harvard, Vancouver, ISO, and other styles
33

Rani, Pooja, and Atul Kumar Agrawal. "Natural Frequency Evaluation of Low-Pressure Stage Blade of a 210 MW Steam Turbine." IOP Conference Series: Materials Science and Engineering 1248, no. 1 (July 1, 2022): 012032. http://dx.doi.org/10.1088/1757-899x/1248/1/012032.

Full text
Abstract:
Abstract Steam turbines rely heavily on the performance and reliability of their rotor blades. When a steam turbine blade fails, it can pose a risk to workers' life, need expensive repairs, and cause income losses. The failure mechanism differs from case to case and is typically quite complex. The last stage turbine blades are very long and rotate at high speed. In extreme dynamic loads, these big blades are the most susceptible to failure. So, the dynamic behaviour of the last stage steam turbine blade is of great importance and analysed by numerical simulation in this work. Mode shapes at natural frequencies of the blade at stationary condition and at different speeds of rotation are determined. A Campbell diagram is used to forecast the expected operational conditions that may result in blade resonant vibration.
APA, Harvard, Vancouver, ISO, and other styles
34

Çiftci, Cihan, Ayşe Erdoğan, and Mustafa Serdar Genç. "Investigation of the Mechanical Behavior of a New Generation Wind Turbine Blade Technology." Energies 16, no. 4 (February 16, 2023): 1961. http://dx.doi.org/10.3390/en16041961.

Full text
Abstract:
Wind turbine blades are one of the largest parts of wind power systems. It is a handicap that these large parts of numerous wind turbines will become scrap in the near future. To prevent this handicap, newly produced blades should be recyclable. In this study, a turbine blade, known as the new generation of turbine blade, was manufactured with reinforced carbon beams and recycled, low-density polyethylene materials. The manufacturing addressed in this study reveals two novelties: (1) it produces a heterogeneous turbine blade; and (2) it produces a recyclable blade. In addition, this study also covers mechanical tests using a digital image correlation (DIC) system and modeling investigations of the new generation blade. For the mechanical tests, displacement and strain data of both new generation and conventional commercial blades were measured by the DIC method. Instead of dealing with the modeling difficulty of the new generation blade’s heterogeneity we modeled the blade structural system as a whole using the moment–curvature method as part of the finite element method. Then, the behavior of both the new generation and commercial blades at varying wind speeds and different angles of attack were compared. Consequently, the data reveal that the new generation blades performed sufficiently well compared with commercial blades regarding their stiffness.
APA, Harvard, Vancouver, ISO, and other styles
35

Sudarma, Andi F., Muhammad Kholil, Subekti Subekti, and Indra Almahdy. "The Effect of Blade Number on Small Horizontal Axis Wind Turbine (HAWT) Performance: An Experimental and Numerical Study." International Journal of Environmental Science and Development 11, no. 12 (2020): 555–60. http://dx.doi.org/10.18178/ijesd.2020.11.12.1307.

Full text
Abstract:
The effect of blade number on small Horizontal Axis Wind Turbine (HAWT) has been studied experimentally and numerically in this research. The turbine blade is made of a flat metal sheet and the tip was formed to shape a winglet. The 5-blades turbine was tested inside a wind tunnel for performance investigation at different wind speeds. The experiment was conducted under various wind speed, i.e. 3.5 m/s, 3.9 m/s, 4.3 m/s, 4.6 m/s dan 5 m/s. Furthermore, three wind turbines geometry with different blade number (3, 4, and 5 blades) were built for numerical study purpose by using Ansys Fluent and the results were compared to the experimental one. The results show that the blade number does increase the wind turbine torque and there is also more power generated from the turbine with more blade numbers since torque is related to pressure. Moreover, the winglet helps the blade to retain the flow and increases the pressure on the blade surface. However, the experimental measurements obtained were smaller than the numerical predictions about 50% on the average since more unidentified losses existed and not accounted for the calculation.
APA, Harvard, Vancouver, ISO, and other styles
36

Han, Je-Chin, and Srinath Ekkad. "Recent Development in Turbine Blade Film Cooling." International Journal of Rotating Machinery 7, no. 1 (2001): 21–40. http://dx.doi.org/10.1155/s1023621x01000033.

Full text
Abstract:
Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT). The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.
APA, Harvard, Vancouver, ISO, and other styles
37

Mwanyika, Hegespo H., Yusufu AC Jande, and Thomas Kivevele. "Design and Performance Analysis of Composite Airfoil Wind Turbine Blade." Tanzania Journal of Science 47, no. 5 (December 1, 2021): 1701–15. http://dx.doi.org/10.4314/tjs.v47i5.18.

Full text
Abstract:
Abstract Small horizontal axis wind turbine rotors with composite airfoil rotor blades were designed and investigated in the present study in order to improve its performance in low wind speed and low Reynolds number (Re) conditions for standalone system. The geometrical and aerodynamic nature of a single airfoil small horizontal axis wind turbine blade curtails efficient energy harnessing of the rotor blade. The use of composite airfoil rotor blade improves energy production but imposes uncertainty in determining an optimal design angle of attack and the off design aerodynamic behaviour of the rotor. This research investigated the effects of two airfoils used at different sections in a composite blade and determined the blade’s optimal design angle of attack for maximum power generation. The wind turbine rotor blades were designed using blade element momentum (BEM) method and modelled by SolidWorks software. The SG6042 and SG6043 airfoils were used for the composite airfoil blades. Five wind turbines were designed with rotor blades of design angles of attack from 3° to 7°. The five wind turbine blades were simulated in computational fluid dynamics to determine the optimal design angle of attack. The composite airfoil wind turbine blade showed improved performance, whereas, the wind power generated ranged from 4966 W to 5258 W and rotor power coefficients ranged from 0.443 to 0.457. The blade with design angle of attack of 6° showed highest performance. Keywords: composite airfoil, lift-to-drag ratio, pressure coefficient, Reynolds number, design angle of attack.
APA, Harvard, Vancouver, ISO, and other styles
38

Andriyan, Ari, and Rosyida Permatasari. "PENGARUH DIAMETER BLADE TIPE LURUS TERHADAP EFISIENSI TURBIN VORTEKS MENGGUNAKAN METODE CFD." JURNAL PENELITIAN DAN KARYA ILMIAH LEMBAGA PENELITIAN UNIVERSITAS TRISAKTI 8, no. 1 (December 31, 2022): 54–65. http://dx.doi.org/10.25105/pdk.v8i1.14861.

Full text
Abstract:
Salah satu sistem yang digunakan oleh Pembangkit Listrik Tenaga Mikro Hidro adalah mikro hidro vorteks. Mikro hidro vorteks menggunakan energi kinetik air yang membentuk pusaran yang akan menggerakkan blade turbin. Faktor yang dapat ditinjau agar mendapatkan efisiensi turbin yang optimal adalah jenis ukuran pada blade. Tujuan penelitian ini adalah untuk mengetahui pengaruh diameter blade tipe lurus terhadap efisiensi turbin menggunakan metoda CFD. Tipe blade yang digunakan adalah tipe lurus dengan diameter 20cm, 25cm, dan 30cm. Performa turbin didapat menggunakan metode Computational Fluid Dynamics (CFD) dengan simulasi software ANSYS Fluent. Hasil simulasi yang diperoleh adalah nilai performa tertinggi dari turbin vorteks terjadi pada uji parameter blade ukuran 30cm dengan nilai daya 775Watt, nilai putaran turbin 847rpm, nilai kecepatan sudut () pada 88,7rad/s, nilai torsi pada 8,51J, dan nilai efisiensi mencapai angka 73%. ABSTRACT One of the systems used by the Micro Hydro Power Plant is the micro hydro vortex. Micro hydro vortex uses the kinetic energy of water to form a vortex that will drive the turbine blades. Factors that can be reviewed in order to obtain optimal turbine efficiency is the type of blade size. The purpose of this study was to determine the effect of straight type blade diameter on turbine efficiency using the CFD method. The type of blade used is a straight type with a diameter of 20cm, 25cm, and 30cm. Turbine performance is obtained using the Computational Fluid Dynamics (CFD) method with ANSYS Fluent software simulation. The simulation results obtained are the highest performance value of the vortex turbine occurs in the 30cm blade parameter test with a power value of 775Watt, turbine rotation value 847rpm, angular velocity () value at 88.7rad/s, torque value at 8.51J, and efficiency reaches 73%.
APA, Harvard, Vancouver, ISO, and other styles
39

Hsieh, W. C., J. M. Miao, C. C. Lai, and C. S. Tai. "Experimental Study on Performance of Vertical Axis Wind Turbine with NACA 4-Digital Series of Blades." Advanced Materials Research 488-489 (March 2012): 1055–61. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.1055.

Full text
Abstract:
The experimental studies of output power performances of a vertical-axis-wind-turbine (VAWT) had been conducted in suction-type low speed wind tunnel with various free stream velocity. Torque and rotation speed of blades were measured by using torque meter and optical detector to analyze the effect of blade-section shape on the performance of wind turbine. The test model of experiments in the research was H-rotor VAWT. Three shapes of the NACA 4-digital series blade-section, NACA0022, NACA6404, and NACA6422 were taken in this work. Effects of thickness and camber of blade-section, blade numbers, and blade setting angles on the performance of VAWT have been analyzed in detail. The results show that NACA6422 blade-section has rotation speed of 42% higher than that of NACA0022 when the free stream velocity is below 12 m/s and the blade numbers are 4-blade type. Wind turbines with NACA6422 blades also showed that about 10% higher output power than that of NACA0022 blades among the tested range of free stream velocity. Results indicated that wind turbine with blades of anti-symmetric and thick blade-section was generally more suitable for applying to VAWT. All results of this study can be used the optimization design of VAWT blades in further.
APA, Harvard, Vancouver, ISO, and other styles
40

Purwoko, Purwoko. "PENGARUH JUMLAH DAN SUDUT PEMASANGAN SUDU TERHADAP DAYA TURBIN SAVONIUS." INFO-TEKNIK 21, no. 2 (January 25, 2021): 125. http://dx.doi.org/10.20527/infotek.v21i2.10036.

Full text
Abstract:
The problem in Energy conservation is finding new opportunities for high-efficiency energy generation including wind power generating machines. Aims of this study to determine the effects of blade number and curv angle of blade mounting on the output power of a Savonius type wind turbine. This low speed wind turbine is intended to get energy at the top of a multi-storey building in an urban area. Tests were carried out on a laboratory scale, using savonius wind turbines with 400 mm diameter and 500 mm height. The driving wind speed of the turbine is set between 1.5 to 8.5 m / s. While the number of blades used is 2 types, namely rotor with three blades and rotor with 4 blades, each of which is tested on 3 different types of curv angle blade. The investigation results are expected to show that the wind tubing from each experiment will give different characteristics. This investigation results that there was increasing in efficiency in the savonius turbine with blades. The highest rotation and power occur when the turbine uses 2 blades and -50 curv angle of blade mounting
APA, Harvard, Vancouver, ISO, and other styles
41

Jüchter, J., J. Peinke, L. J. Lukassen, and M. Hölling. "Reduction and analysis of rotor blade misalignments on a model wind turbine." Journal of Physics: Conference Series 2265, no. 2 (May 1, 2022): 022071. http://dx.doi.org/10.1088/1742-6596/2265/2/022071.

Full text
Abstract:
Abstract Model wind turbines with rotor diameters below 1 m often make use of a collective pitch control instead of an individual pitch control. As a result it is more difficult to achieve a high precision in the rotor blade pitch angle, especially when it comes to achieving the same pitch angle on each rotor blade. For the Model Wind Turbine Oldenburg 0.6 (MoWiTO 0.6) a rotor blade misalignment between the individual blades of up to 2.5 degrees was found. Due to the design, similar blade misalignments could also occur at other model wind turbines with a collective pitch mechanism. Here, it is shown that even small rotor blade misalignments influence the experimental results of small model wind turbines and should be avoided. In addition, a new mounting procedure is presented that serves to minimize blade misalignments when assembling the individual rotor blades in the manufacturing process. This procedure makes use of 3D printed parts that enclose the rotor blade during the mounting process and guarantee a precise pitch angle. The presented procedure is easily applicable to other model wind turbines as well. The subsequent experimental investigations of blade misalignments in the range of ±2.5 degrees show a significant influence on the turbine performance and thrust. A blade misalignment of +2.4 degrees for only one blade already decreases the mean power output of the turbine by up to 9%. Additionally, the mean thrust measurements show a clear influence of the blade misalignment (up to 17% difference) in comparison to the optimal pitch reference case. Furthermore the 1P (one-per-revolution) peaks of the thrust spectrum are significantly increased with present blade misalignments which suggests cyclic loads. These results underline the relevance of a precise rotor blade attachment for model wind turbines used in wind tunnel experiments.
APA, Harvard, Vancouver, ISO, and other styles
42

Kang, Haojie, Bofeng Xu, Xiang Shen, Zhen Li, Xin Cai, and Zhiqiang Hu. "Comparison of Blade Aeroelastic Responses between Upwind and Downwind of 10 MW Wind Turbines under the Shear Wind Condition." Energies 16, no. 6 (March 8, 2023): 2567. http://dx.doi.org/10.3390/en16062567.

Full text
Abstract:
This paper examines the potential for reducing the cost of energy for super-scale wind turbines through the use of a downwind configuration. Using nonlinear aeroelastic modeling, the responses of 10 MW upwind and downwind wind turbine blades are simulated and compared under shear wind conditions. The study evaluates the impact of both nonlinear and linear aeroelastic models on the dynamic response of different blade sizes, highlighting the need for a nonlinear approach. Results indicate that the linear model overestimates blade deformations (18.14%) and the nonlinear model is more accurate for predicting the aeroelastic response of ultra-long blades of 86.35 m. The study also finds that the downwind turbine blade experiences smaller flapwise moment (17.53%), and blade tip flapwise deformation (33.97%) than the upwind turbine blade, with increased load and deformation fluctuation as wind shear increases.
APA, Harvard, Vancouver, ISO, and other styles
43

Xu, Lianchen, Xiaohui Jin, Zhen Li, Wanquan Deng, Demin Liu, and Xiaobing Liu. "Particle Image Velocimetry Test for the Inter-Blade Vortex in a Francis Turbine." Processes 9, no. 11 (November 4, 2021): 1968. http://dx.doi.org/10.3390/pr9111968.

Full text
Abstract:
Hydropower units are usually operated in non-design conditions because of power grid requirements. In a partial-load condition, an inter-blade vortex phenomenon occurs between the runner blades of a Francis turbine, causing pressure pulsation and unit vibration, which hinder the safe and stable operation of power stations. However, the mechanism through which the inter-blade vortex generation occurs is not entirely clear. In this study, a specific model of the Francis turbine was used to investigate and visually observe the generation of the blade vortex in Francis turbines in both the initial inter-blade and vortex development zones. Particle image velocimetry was used for this purpose. In addition, we determined the variation law of the inter-blade vortex in the Francis turbine. We found that the size and strength of the inter-blade vortex depend on the unit speed of the turbine. The higher the unit speed is, the stronger the inter-blade vortex becomes. We concluded that the inter-blade vortex of such turbines originates from the pressure surface or secondary flow and stall of the blade at the inlet side of the runner at high unit speeds, and also from the backflow zone of the suction surface of the blade at low unit speeds.
APA, Harvard, Vancouver, ISO, and other styles
44

Mai, Thanh Dam, and Jaiyoung Ryu. "Effects of Leading-Edge Modification in Damaged Rotor Blades on Aerodynamic Characteristics of High-Pressure Gas Turbine." Mathematics 8, no. 12 (December 9, 2020): 2191. http://dx.doi.org/10.3390/math8122191.

Full text
Abstract:
The flow and heat-transfer attributes of gas turbines significantly affect the output power and overall efficiency of combined-cycle power plants. However, the high-temperature and high-pressure environment can damage the turbine blade surface, potentially resulting in failure of the power plant. Because of the elevated cost of replacing turbine blades, damaged blades are usually repaired through modification of their profile around the damage location. This study compared the effects of modifying various damage locations along the leading edge of a rotor blade on the performance of the gas turbine. We simulated five rotor blades—an undamaged blade (reference) and blades damaged on the pressure and suction sides at the top and middle. The Reynolds-averaged Navier–Stokes equation was used to investigate the compressible flow in a GE-E3 gas turbine. The results showed that the temperatures of the blade and vane surfaces with damages at the middle increased by about 0.8% and 1.2%, respectively. This causes a sudden increase in the heat transfer and thermal stress on the blade and vane surfaces, especially around the damage location. Compared with the reference case, modifications to the top-damaged blades produced a slight increase in efficiency about 2.6%, while those to the middle-damaged blades reduced the efficiency by approximately 2.2%.
APA, Harvard, Vancouver, ISO, and other styles
45

Matsui, Takuto, Kazuo Yamamoto, and Jun Ogata. "Study on Improvement of Lightning Damage Detection Model for Wind Turbine Blade." Machines 10, no. 1 (December 22, 2021): 9. http://dx.doi.org/10.3390/machines10010009.

Full text
Abstract:
There have been many reports of damage to wind turbine blades caused by lightning strikes in Japan. In some of these cases, the blades struck by lightning continue to rotate, causing more serious secondary damage. To prevent such accidents, it is a requirement that a lightning detection system is installed on the wind turbine in areas where winter lightning occurs in Japan. This immediately stops the wind turbine if the system detects a lightning strike. Normally, these wind turbines are restarted after confirming soundness of the blade through visual inspection. However, it is often difficult to confirm the soundness of the blade visually for reasons such as bad weather. This process prolongs the time taken to restart, and it is one of the causes that reduces the availability of the wind turbines. In this research, we constructed a damage detection model for wind turbine blades using machine learning based on SCADA system data and, thereby, considered whether the technology automatically confirms the soundness of wind turbine blades.
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Yuquan, Zhiqiang Liu, Chengyi Li, Xuemei Wang, Yuan Zheng, Zhi Zhang, Emmanuel Fernandez-Rodriguez, and Rabea Jamil Mahfoud. "Fluid–Structure Interaction Modeling of Structural Loads and Fatigue Life Analysis of Tidal Stream Turbine." Mathematics 10, no. 19 (October 7, 2022): 3674. http://dx.doi.org/10.3390/math10193674.

Full text
Abstract:
Developing reliable tidal-energy turbines of a large size and capacity links to preservation of the structural safety and stability of the blades. In this study, a bidirectional fluid–structure coupling method was applied to analyze the hydrodynamic performance and structural characteristics of the blade of a tidal-stream turbine. Analyses were conducted on the transient and stable structural stresses, fatigue, and deformations under the influence of water depth and turbine rotational speed. The performance predictions with and without fluid–structure coupling are similar to measurements. The water-depth change has little effect on the stress and deformation change of the blade, while the turbine-speed change has the most significant effect on it. When the turbine just starts, the blade will be subject to a sudden change load. This is due to the increase in turbine speed, resulting in the sudden load. Similar to the trend of blade stress, the blade safety factor is lower near the root of the blade, and the turbine-speed change has a more significant impact on the blade structure’s safety. However, the number of stress cycles in the blade at different rotational speeds is within the safety range.
APA, Harvard, Vancouver, ISO, and other styles
47

Ando, Takashi. "Pulsation and Vibration Measurement on Stator Side for Turbocharger Turbine Blade Vibration Monitoring." International Journal of Turbomachinery, Propulsion and Power 5, no. 2 (May 25, 2020): 11. http://dx.doi.org/10.3390/ijtpp5020011.

Full text
Abstract:
Mechanically robust turbine design with respect to blade vibration is challenging when dealing with nozzle-ring fouling and wear. Especially for engines operating with heavy fuel oil (HFO), the nozzle rings of the turbocharger turbines are prone to severe degradation in terms of contamination with unburned fuel deposits. This contamination will lead to an increased excitation of blade resonances in comparison to the nominal design. Due to the statistical character of contamination, long-term monitoring of blade vibration amplitudes would be beneficial. In the harsh environment of HFO operation, however, conventional blade vibration measurement techniques, such as those using strain gauges or blade tip timing, cannot work reliably for a long period. Thus, the objective of this research is to develop a method that enables the monitoring of turbine blades using pulsation or vibration sensors installed on the stator side. Almost a dozen turbines, both radial and axial, have been examined in order to determine a proper measurement chain/position and analytical method. Even though the challenges specific to the turbocharger turbine application—that high-frequency (up to 50 kHz) acoustic radiation from turbine blades has to be detected by a sensor on the stator side—were demanding, in the course of the investigations several clear examples of turbine blades engine-order resonance detection were gathered. Finally, the proposed method has been tested successfully in a power plant for over one year.
APA, Harvard, Vancouver, ISO, and other styles
48

Al-Gburi, Kumail Abdulkareem Hadi, Firas Basim Ismail Alnaimi, Balasem Abdulameer Jabbar Al-quraishi, Ee Sann Tan, and Ali Kamil Kareem. "Enhancing Savonius Vertical Axis Wind Turbine Performance: A Comprehensive Approach with Numerical Analysis and Experimental Investigations." Energies 16, no. 10 (May 19, 2023): 4204. http://dx.doi.org/10.3390/en16104204.

Full text
Abstract:
Small-scale vertical-axis wind power generation technologies such as Savonius wind turbines are gaining popularity in suburban and urban settings. Although vertical-axis wind turbines (VAWTs) may not be as efficient as their horizontal-axis counterparts, they often present better opportunities for integration within building structures. The main issue stems from the suboptimal aerodynamic design of Savonius turbine blades, resulting in lower efficiency and power output. To address this, modern turbine designs focus on optimizing various geometric aspects of the turbine to improve aerodynamic performance, efficiency, and overall effectiveness. This study developed a unique optimization method, incorporating a new blade geometry with guide gap flow for Savonius wind turbine blade design. The aerodynamic characteristics of the Savonius wind turbine blade were extensively analyzed using 3D ANSYS CFX software. The optimization process emphasized the power coefficient as the objective function while considering blade profiles, overlap ratio, and blade number as crucial design parameters. This objective was accomplished using the design of experiments (DOE) method with the Minitab statistical software. The research findings revealed that the novel turbine design “OR0.109BS2BN2” outperformed the reference turbine with a 22.8% higher power coefficient. Furthermore, the results indicated a trade-off between the flow (swirling flow) through the gap guide flow and the impact blockage ratio, which resulted from the reduced channel width caused by the extended blade tip length.
APA, Harvard, Vancouver, ISO, and other styles
49

Imam Syofii, Dewi Puspita Sari, Mochamad Amri Santosa, Suproyadi, Anthony Costa, Dendy Adanta, Rudi Darussalam, Andri Setiawan, Arifin Santosa, and Kusnadi. "Feasibility of Pico Scale Turgo Turbine Blade Manufacturing Method Using Three-Dimension Printer Technology." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 107, no. 1 (July 31, 2023): 190–201. http://dx.doi.org/10.37934/arfmts.107.1.190201.

Full text
Abstract:
This study proposed the design of pico-scale Turgo turbine blades using triangle velocity and printing blades using three-dimensional (3D) printer technology. Then, describe the testing method of Pico scale Turgo turbines in laboratory conditions. The velocity triangle analysis accommodates backflow where it is affected by blade angle; this is relevant to the Turgo turbine because the flow and blades have an angle so that the estimated change in momentum approaches real conditions. Based on calculation results, the geometry of the pico-scale Turgo turbine blades that produce maximum performance is as follows: angle of attack is 20°, inlet blade angle is 40°, outlet blade angle is 10°, and radius blade angle is 15°. Then, simulation results determine the potential water power that the blade is capable of receiving is 17.5 W. The experimental setup has a potential water power of 14.81 W, lower than the mechanical strength simulation results. From the experimental results, the performance maximum is 0.092; the average deviation between the analytical and experimental is 4%. Therefore, the manufacture of pico-scale Turgo turbine blades using 3D printer technology is considered because of the ease of the manufacturing process, the time needed in the manufacturing process is short, and the cost is low.
APA, Harvard, Vancouver, ISO, and other styles
50

Chavan, Umesh, Dhiraj Ghode, Ranveer Ghorpade, Hritika Aacharya, Vaibhav Ubale, Kedar Urunkar, and Nitin Satpute. "Design and analysis of energy efficient wind turbine blades." IOP Conference Series: Materials Science and Engineering 1272, no. 1 (December 1, 2022): 012020. http://dx.doi.org/10.1088/1757-899x/1272/1/012020.

Full text
Abstract:
Inspired by humpback whale flippers, this study presents the effect of leading-edge tubercles on the wind turbine blade. Force models for lift and drag are developed on the blade which have an important role in the wind turbine performance. The study compares the CFD simulation of fluid flow over blade with leading edge tubercles and the conventional blade. Present work also covers strength and random vibration analysis for both the blades. Furthermore, different tubercle blades have been compared for lift and drag coefficients by varying tubercle amplitude. Structural analysis shows tubercled blade is suitable from structural and strength point view. In tubercled blade overall lift to drag-coefficient ratio increased up to 8.5, whereas in conventional this ratio is about 1.7 which is found to be very low. This ratio clearly indicates that in the presence of tubercles on the blade, performance improving even in lower wind speed areas. Overall tubercled blade found to be more suitable for modern wind turbines.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography