Academic literature on the topic 'Turbine governor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbine governor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turbine governor"
KRISTYADI, TARSISIUS, REZA ADITYA, and PRAMUDA NUGRAHA. "Pengembangan Governor Elektrik Berbasis Arduino sebagai Sistem Kontrol Turbin Air Screw." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 8, no. 3 (August 27, 2020): 533. http://dx.doi.org/10.26760/elkomika.v8i3.533.
Full textArnautovic, Dusan, and Dane Dzepceski. "Suboptimal design of turbine governors for low head hydroturbines." Facta universitatis - series: Electronics and Energetics 23, no. 2 (2010): 191–98. http://dx.doi.org/10.2298/fuee1002191a.
Full textTripathy, S. C. "Digital speed governor for steam turbine." Energy Conversion and Management 35, no. 2 (February 1994): 159–69. http://dx.doi.org/10.1016/0196-8904(94)90076-0.
Full textHannett, L. N., G. Jee, and B. Fardanesh. "A governor/turbine model for a twin-shaft combustion turbine." IEEE Transactions on Power Systems 10, no. 1 (1995): 133–40. http://dx.doi.org/10.1109/59.373935.
Full textBalaghi Enalou, Hossein, and Eshagh Abbasi Soreshjani. "A Detailed Governor-Turbine Model for Heavy-Duty Gas Turbines With a Careful Scrutiny of Governor Features." IEEE Transactions on Power Systems 30, no. 3 (May 2015): 1435–41. http://dx.doi.org/10.1109/tpwrs.2014.2342253.
Full textTone, Y., H. Nakamura, and Y. Yokota. "Microprocessor-Based Fault-Tolerant Nuclear Turbine Governor." IEEE Transactions on Nuclear Science 33, no. 1 (1986): 983–91. http://dx.doi.org/10.1109/tns.1986.4337263.
Full textWatanabe, Takao. "ROBUST DECENTRALIZED TURBINE-GOVERNOR CONTROL SUBJECT TO CONSTRAINT ON TURBINE OUTPUT." IFAC Proceedings Volumes 35, no. 1 (2002): 371–76. http://dx.doi.org/10.3182/20020721-6-es-1901.01213.
Full textRong, Hong, Xiang Zhu, Lei Zhang, Deng Shan Chen, Xiao Yong Chen, Feng Qian, Dong Xu, Wei Jiang Cai, and Xiao Feng Cai. "The Significance and Implication of Control Object's Self-Balancing Applied in Turbine Governor Control." Advanced Materials Research 468-471 (February 2012): 1982–88. http://dx.doi.org/10.4028/www.scientific.net/amr.468-471.1982.
Full textZhu, Jian Guo. "The Impact of Hydro-Turbine and its Governor System on Power System Low Frequency Oscillation." Advanced Materials Research 614-615 (December 2012): 875–79. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.875.
Full textKong, Fannie, and Yan LI. "A H∞ Robust control strategy of hydro turbine speed governor with surge tank." Indian Journal of Power and River Valley Development 70, no. 11&12 (June 10, 2021): 193. http://dx.doi.org/10.18311/ijprvd/2020/27954.
Full textDissertations / Theses on the topic "Turbine governor"
Lucero, Tenorio Luz Alexandra. "Hydro Turbine and Governor Modelling : Electric - Hydraulic Interaction." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11105.
Full textMansoor, Sa'ad. "Behaviour and operation of pumped storage hydro plants." Thesis, Bangor University, 2000. https://research.bangor.ac.uk/portal/en/theses/behaviour-and-operation-of-pumped-storage-hydro-plants(c1905e46-af51-444a-b85b-f2ee7ad1b598).html.
Full textNäsström, Joakim. "State-of-the-art development platform for hydropower turbine governors." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-143909.
Full textEkmarker, Linda. "Frequency Control : Optimal distribution of FCR-N in real-time." Thesis, Uppsala universitet, Elektricitetslära, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-230897.
Full textVališ, Petr. "Parní turbina." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-228959.
Full textTrentini, Preuss Rodrigo [Verfasser]. "Contributions to the damping of interarea modes in extended power systems : a turbine governor approach with the help of the Unrestricted Horizon Predictive Controller / Rodrigo Trentini Preuss." Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1136295828/34.
Full textDen, Heijer Francois Malan. "Development of an active pitch control system for wind turbines / F.M. den Heijer." Thesis, North-West University, 2008. http://hdl.handle.net/10394/2635.
Full textThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
Yilmaz, Oguz. "Participation Of Combined Cycle Power Plants To Power System Frequency Control: Modeling And Application." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607228/index.pdf.
Full texts grid and studies related to its improvement had been a great concern, so is the reason that main subject of my thesis became as &ldquo
Power System Frequency Control&rdquo
. Apart from system-wide global control action (secondary control)
load control loops at power plants, reserve power and its provision even at the minimum capacity generation stage, (primary control) are the fundamental concerns of this subject. The adjustment of proper amount of reserve at the power plants, and correct system response to any kind of disturbance, in the overall, are measured by the quality of the frequency behaviour of the system. A simulator that will simulate a dynamic gas turbine and its control system model, together with a combined cycle power plant load controller is the outcome of this thesis.
Vigolo, Vinícius, Gregori Conterato, Talles Spada, Leonardo Augusto Weiss, and Negri Victor Juliano De. "Energy efficiency and performance of servopneumatic drives for speed governors based on operating points." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71218.
Full textPACO, DAVID FRANCISCO DELGADO. "DYNAMIC AGGREGATION OF TURBINES AND SPEED GOVERNORS: ANATEM MODELS 02, 03 AND 05." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5584@1.
Full textEsta dissertação trata do problema de agregação dinâmica de modelos de turbinas e reguladores de velocidade de unidades geradoras coerentes, visando o cálculo de equivalentes dinâmicos precisos para estudos de estabilidade transitória de sistemas de energia elétrica. Os modelos de turbina e regulador de velocidade considerados neste trabalho são do banco de dados de estabilidade do sistema elétrico brasileiro (modelos do Anatem). A metodologia empregada para o cálculo de equivalentes dinâmicos apresenta três etapas básicas: a identificação de geradores coerentes, a redução estática da rede e a agregação dinâmica dos modelos das unidades geradoras coerentes. A agregação dinâmica de um grupo de unidades geradoras coerentes consiste em representar esse grupo através de uma ou mais unidades geradoras equivalentes. As unidades geradoras coerentes podem ser representadas por diferentes modelos de máquina síncrona, sistema de excitação, estabilizador, turbina e regulador de velocidade. Os parâmetros lineares dos modelos equivalentes são ajustados numericamente através do método de Levenberg-Marquardt para resolver o problema de otimização multivariável. As respostas em freqüência são apresentadas em diagramas de Bode (módulo e fase). O bem conhecido sistema New England é considerado para a avaliação do desempenho dinâmico dos equivalentes. As curvas de oscilação angular e de potência elétrica dos geradores do sistema interno, assim como curvas de tensão em barras, obtidas com o sistema equivalente são comparadas com aquelas obtidas com a simulação do sistema completo.
This dissertation deals with the problem of dynamic aggregation of turbine and speed governor models of coherent generating units to calculate dynamic equivalents for power system transient stability studies. The turbine and speed governor models considered in this work are in the Brazilian electrical system stability database (Anatem models). The methodology used for the calculation of coherency-based dynamic equivalents has three basic steps: the identification of the coherent groups of generating units, the static reduction of the external network and the dynamic aggregation of coherent generating unit models. The dynamic aggregation of a group of coherent generating units consists of the representation of this group by one or more equivalent generating units. The coherent generating units can be represented by different models of synchronous machine, excitation system, stabilizer, turbine and speed governor. The linear parameters of the equivalent models are numerically adjusted using the Levenberg-Marquardt method in order to solve the multivariable optimization problem. The frequency responses are presented in Bode diagrams (magnitude and phase). The well known New England system is considered for the evaluation of the dynamic performance of the equivalents. The angular swing curves and electric power curves of the internal system generators as well as bus voltage curves obtained with the equivalent system are compared with those obtained with the simulation of the complete system.
Books on the topic "Turbine governor"
The 2006-2011 World Outlook for Engine Speed Governors for Internal Combustion Engines Excluding Aircraft and Gasoline Automotive Engines and Gas Turbines. Icon Group International, Inc., 2005.
Find full textBook chapters on the topic "Turbine governor"
Klaučo, Martin, and Michal Kvasnica. "Boiler–Turbine System." In MPC-Based Reference Governors, 71–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17405-7_7.
Full textVasiliu, Nicolae, Daniela Vasiliu, Constantin Călinoiu, and Radu Puhalschi. "Design of the speed governors for hydraulic turbines by Amesim." In Simulation of Fluid Power Systems with Simcenter Amesim, 403–48. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315118888-9.
Full textHarvey, Adam. "20. Introduction; Responsibilities; The O+M Documents; Weirs; Intakes; Overflow and Spillways; Channels; Silt Tanks and Forebay Tanks; Penstocks; Valves; Turbines; Drives, Bearings and Belts; Governors; Electrical Generators; The Switchboard; Transmission Lines; Recommended Spare Parts; Tools; Operation; Micro-hydro Fault Diagnosis." In Micro-Hydro Design Manual, 321–44. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1993. http://dx.doi.org/10.3362/9781780445472.020.
Full textMushiri, Tawanda, and Charles Mbohwa. "Simulation and Modeling." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 225–59. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8823-0.ch008.
Full textMushiri, Tawanda, and Charles Mbohwa. "Simulation and Modeling." In Intelligent Systems, 1600–1632. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5643-5.ch070.
Full text"Novel Design of a Nonlinear Robust Governor for Turbine Generating System." In International Conference on Information Technology and Computer Science, 3rd (ITCS 2011), 5–8. ASME Press, 2011. http://dx.doi.org/10.1115/1.859742.paper2.
Full textGanthia, Bibhu Prasad, Monalisa Mohanty, and Jai Kumar Maherchandani. "Power Analysis Using Various Types of Wind Turbines." In Advances in Environmental Engineering and Green Technologies, 271–86. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7447-8.ch010.
Full textKaliannan, Jagatheesan, Anand B, Nguyen Gia Nhu, Nilanjan Dey, Amira S. Ashour, and Valentina E. Balas. "Automatic Generation Control of Hydro-Hydro Interconnected Power System Based on Ant Colony Optimization." In Recent Developments in Intelligent Nature-Inspired Computing, 153–70. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2322-2.ch007.
Full textKaliannan, Jagatheesan, Anand Baskaran, and Nilanjan Dey. "Automatic Generation Control of Thermal-Thermal-Hydro Power Systems with PID Controller Using Ant Colony Optimization." In Renewable and Alternative Energy, 761–78. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1671-2.ch023.
Full textLeyzerovich, Alexander S. "Scheduled and Unscheduled Load Changes within and Beyond the Governed Range." In Steam Turbines for Modern Fossil-Fuel Power Plants, 295–303. River Publishers, 2021. http://dx.doi.org/10.1201/9781003151388-13.
Full textConference papers on the topic "Turbine governor"
Paling, William M. "Considerations in Retrofitting Gas Turbine Governors." In ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-206.
Full textHeng, Qinghai, Jing Lu, and Yang Lu. "Robust control of hydro turbine speed governor." In 2012 10th World Congress on Intelligent Control and Automation (WCICA 2012). IEEE, 2012. http://dx.doi.org/10.1109/wcica.2012.6358326.
Full textYang, Tao, Lei Tang, Yanghai Li, Wei Gao, Kun Wang, Pinting Zhang, Yanping Zhang, and Shuhong Huang. "Parameter Identification of Steam Turbine Speed Governor System." In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55426.
Full textLi Fengpan and Lu Wenhua. "Turbine governor system frequency measurement based on DSP." In 2011 2nd International Conference on Control, Instrumentation, and Automation (ICCIA). IEEE, 2011. http://dx.doi.org/10.1109/icciautom.2011.6184018.
Full textYang, Tao, Yongxin Feng, Tao Yang, Yong Ren, Lei Tang, and Yanghai Li. "Parameter Identification of Steam Turbine Speed Governor System." In 2012 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2012. http://dx.doi.org/10.1109/appeec.2012.6307028.
Full textLi, Fengpan, and Wenhua Lu. "Turbine Governor System Frequency Measurement Based On DSP." In 2013 2nd International Conference on Intelligent System and Applied Material. Ottawa: EDUGAIT Press, 2013. http://dx.doi.org/10.12696/gsam.2013.1000.
Full textLi, Wenlei, Ting Lan, and Weixing Lin. "Nonlinear Adaptive Robust Governor Control for Turbine generator." In 2010 8th IEEE International Conference on Control and Automation (ICCA). IEEE, 2010. http://dx.doi.org/10.1109/icca.2010.5524071.
Full textManson, Scott, Bill Kennedy, and Matt Checksfield. "Solving turbine governor instability at low-load conditions." In 2015 IEEE Petroleum and Chemical Industry Committee Conference (PCIC). IEEE, 2015. http://dx.doi.org/10.1109/pcicon.2015.7435099.
Full textYu, Xiangyang, Feng Yang, Yongxuang Huang, and Haipeng Nan. "Fuzzy immune sliding mode control based hydro turbine governor." In Third International Conference on Natural Computation (ICNC 2007). IEEE, 2007. http://dx.doi.org/10.1109/icnc.2007.394.
Full textQian, Dianwei, Jianqiang Yi, Xiangjie Liu, and Xin Li. "GA-based fuzzy sliding mode governor for hydro-turbine." In 2010 International Conference on Intelligent Control and Information Processing (ICICIP). IEEE, 2010. http://dx.doi.org/10.1109/icicip.2010.5565249.
Full textReports on the topic "Turbine governor"
Feltes, J., V. Koritarov, L. Guzowski, Y. Kazachkov, B. Lam, C. Grande-Moran, G. Thomann, L. Eng, B. Trouille, and P. Donalek. Review of Existing Hydroelectric Turbine-Governor Simulation Models. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1098022.
Full text