Academic literature on the topic 'Turbocharger Matching'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbocharger Matching.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Turbocharger Matching"

1

Korakianitis, Theodosios, and T. Sadoi. "Turbocharger-Design Effects on Gasoline-Engine Performance." Journal of Engineering for Gas Turbines and Power 127, no. 3 (2005): 525–30. http://dx.doi.org/10.1115/1.1808428.

Full text
Abstract:
Specification of a turbocharger for a given engine involves matching the turbocharger performance characteristics with those of the piston engine. Theoretical considerations of matching turbocharger pressure ratio and mass flow with engine mass flow and power permits designers to approach a series of potential turbochargers suitable for the engine. Ultimately, the final choice among several candidate turbochargers is made by tests. In this paper two types of steady-flow experiments are used to match three different turbochargers to an automotive turbocharged-intercooled gasoline engine. The fi
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Wei, Defeng Du, Juntong Li, Zhiqiang Han, and Wenbin Yu. "Establishment of a Two-Stage Turbocharging System Model and Analysis on Influence Rules of Key Parameters." Energies 13, no. 8 (2020): 1953. http://dx.doi.org/10.3390/en13081953.

Full text
Abstract:
This paper took a two-stage turbocharged heavy-duty six-cylinder diesel engine as the research object and established a two-stage turbocharging system matching model. The influence rules between the two-stage turbocharging key parameters were analyzed, while summarizing an optimization method of key parameters of a two-stage turbocharger. The constraint equations for the optimal distribution principle of the two-stage turbocharger’s pressure ratio and expansion ratio were proposed. The results show that when the pressure ratio constraint equation and expansion ratio constraint equation are sat
APA, Harvard, Vancouver, ISO, and other styles
3

Roy, Badal Dev, and R. Saravanan. "Experimental Evaluation of Turbo-Matching Appropriateness of B60J67, B60J68, A58N70 and A58N72 Turbo-Chargers for a Commercial Vehicle Engine." International Journal of Emerging Research in Management and Technology 6, no. 11 (2018): 71. http://dx.doi.org/10.23956/ijermt.v6i11.49.

Full text
Abstract:
The Turbocharger is a charge booster for internal combustion engines to ensure best engine performance at all speeds and road conditions especially at the higher load. Random selection of turbocharger may lead to negative effects like surge and choke in the breathing of the engine. Appropriate selection or match of the turbocharger (Turbomatching) is a tedious task and expensive. But perfect match gives many distinguished advantages and it is a one time task per the engine kind. This study focuses to match the turbocharger to desired engine by simulation and on road test. The objective of work
APA, Harvard, Vancouver, ISO, and other styles
4

Panting, J., K. R. Pullen, and R. F. Martinez-Botas. "Turbocharger motor-generator for improvement of transient performance in an internal combustion engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 215, no. 3 (2001): 369–83. http://dx.doi.org/10.1243/0954407011525700.

Full text
Abstract:
Turbocharging of internal combustion engines is an established technology used for the purpose of increasing both power density and in some cases the cycle efficiency of diesel engines relative to naturally aspirated engines. However, one significant drawback is the inability to match the characteristics of the turbocharger to the engine under full load and also to provide sufficiently good transient response. Under many conditions this results in reduced efficiency and leads to higher exhaust emissions. The design of turbocharger components must be compromised in order to minimize these drawb
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Qi Xin, and Limin Chen. "Research on Transmitting Efficiency of Supercharged Device." Applied Mechanics and Materials 63-64 (June 2011): 237–40. http://dx.doi.org/10.4028/www.scientific.net/amm.63-64.237.

Full text
Abstract:
In recent years, the internal combustion engine has been widely used through technological advances to improve its environmental performance. Mechanical and electrical integration of the engine turbocharging system is based on conventional turbocharging system to increase motor in parallel with the turbocharger and the corresponding reversible energy storage components, so that achieve by adjusting the energy input or output direction and the size of the motor to adjust the exhaust turbocharger operating point and the gas supply function. According to matching requirements of light vehicle die
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Jun Hao, Hong Ying Ren, and Lian Zhong Huang. "Research on Matching of Main Engine and Turbocharger on Sail-Assisted Ship." Applied Mechanics and Materials 291-294 (February 2013): 513–17. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.513.

Full text
Abstract:
To research the matching of main engine and turbocharger on sail-assisted ship, a 76000 deadweight tonnage cargo ship with 5S60MC main engine and TCA66 turbocharger was selected. The simulation model of working process of the engine was established, with AVL BOOST software, and verified by bench test results. Then, the model was used to analyze the matching of main engine and turbocharger, at constant speed mode of the main engine and constant speed mode of the ship. The results show that, the matching of main engine and turbocharger is acceptable, on the selected sail-assisted ship. However,
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, Qiyou, Andrew Pennycott, Qingning Zhang, Calogero Avola, Ludek Pohorelsky, and Richard Burke. "Dimensionless quantification of small radial turbine transient performance." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 235, no. 1 (2020): 188–98. http://dx.doi.org/10.1177/0954407020942035.

Full text
Abstract:
Turbochargers are inherently dynamic devices, comprising internal flow volumes, mechanical inertias and thermal masses. When operating under transient conditions within an engine system, these dynamics need to be better understood. In this paper, a new non-dimensional modelling approach to characterise the turbocharger is proposed. Two new dimensionless quantities are defined with respect to mechanical and thermal transient behaviour, which are used in conjunction with the Strouhal number for flow transients. The modelling approach is applied to a small wastegated turbocharger and validated ag
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Zhihui, Chaochen Ma, Zhi Huang, Liyong Huang, Xiang Liu, and Zhihong Wang. "A novel variable geometry turbine achieved by elastically restrained nozzle guide vanes." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 9 (2020): 2312–29. http://dx.doi.org/10.1177/0954407020909662.

Full text
Abstract:
Variable geometry turbocharging is one of the most significant matching methods between turbocharger and engine, and has been proven to provide air boost for entire engine speed range as well as to reduce turbo-lag. An elastically constrained device designed for a novel variable geometry turbocharger was presented in this paper. The design of the device is based on the nozzle vane’s self-adaptation under interactions of the elastic force by elastically restrained guide vane and the aerodynamic force from flowing gas. The vane rotation mechanism of the novel variable geometry turbocharger is di
APA, Harvard, Vancouver, ISO, and other styles
9

Karamanis, N., and R. F. Martinez-Botas. "Mixed-flow turbines for automotive turbochargers: Steady and unsteady performance." International Journal of Engine Research 3, no. 3 (2002): 127–38. http://dx.doi.org/10.1243/14680870260189253.

Full text
Abstract:
Turbochargers are finding increasing application to automotive diesel engines as cost effective means for improving their power output and efficiency, and reducing exhaust emissions; these requirements have led to the need for highly loaded turbocharger turbines. A mixed-flow turbine is capable of achieving its peak isen-tropic efficiency at reduced velocity ratios compared to a typical radial inflow turbine; it is therefore possible to improve the turbocharger/engine matching. These turbines differ from the commonly used radial turbines in that the flow approaches the rotor in the non-radial
APA, Harvard, Vancouver, ISO, and other styles
10

Ashikaga, Yasunori. "Turbocharger Matching of Wärtsilä Low Speed Engines." Journal of The Japan Institute of Marine Engineering 51, no. 2 (2016): 182–85. http://dx.doi.org/10.5988/jime.51.182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!