Journal articles on the topic 'Turbocharger with variable geometry vanes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Turbocharger with variable geometry vanes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Zhihui, Chaochen Ma, Zhi Huang, Liyong Huang, Xiang Liu, and Zhihong Wang. "A novel variable geometry turbine achieved by elastically restrained nozzle guide vanes." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 9 (April 8, 2020): 2312–29. http://dx.doi.org/10.1177/0954407020909662.
Full textJiang, P. M., and A. Whitfield. "Investigation of Vaned Diffusers as a Variable Geometry Device for Application to Turbocharger Compressors." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 206, no. 3 (July 1992): 209–20. http://dx.doi.org/10.1243/pime_proc_1992_206_179_02.
Full textLei, Jie, Yan Song Wang, and Hong Juan Ren. "CFD Simulation of Volute of Variable Geometry Turbocharger." Advanced Materials Research 532-533 (June 2012): 287–91. http://dx.doi.org/10.4028/www.scientific.net/amr.532-533.287.
Full textCheng, Li, Pavlos Dimitriou, William Wang, Jun Peng, and Abdel Aitouche. "A novel fuzzy logic variable geometry turbocharger and exhaust gas recirculation control scheme for optimizing the performance and emissions of a diesel engine." International Journal of Engine Research 21, no. 8 (October 31, 2018): 1298–313. http://dx.doi.org/10.1177/1468087418809261.
Full textZhang, Zhongjie, Ruilin Liu, Guangmeng Zhou, Chunhao Yang, Surong Dong, Yufei Jiao, and Jiaming Ma. "Influence of varying altitudes on matching characteristics of the Twin-VGT system with a diesel engine and performance based on analysis of available exhaust energy." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 7 (September 18, 2019): 1972–85. http://dx.doi.org/10.1177/0954407019876220.
Full textKannan, Ramesh, BVSSS Prasad, and Sridhara Koppa. "Transient performance of the mixed flow and radial flow variable geometry turbines for an automotive turbocharger." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 19 (April 15, 2020): 3762–75. http://dx.doi.org/10.1177/0954406220916493.
Full textRamesh, K., BVSSS Prasad, and K. Sridhara. "A comparative study of the performance of the mixed flow and radial flow variable geometry turbines for an automotive turbocharger." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 8 (September 10, 2018): 2696–712. http://dx.doi.org/10.1177/0954406218796043.
Full textThomas, Anand Mammen, Jensen Samuel J., Paul Pramod M., A. Ramesh, R. Murugesan, and A. Kumarasamy. "Simulation of a Diesel Engine with Variable Geometry Turbocharger and Parametric Study of Variable Vane Position on Engine Performance." Defence Science Journal 67, no. 4 (June 30, 2017): 375. http://dx.doi.org/10.14429/dsj.67.11451.
Full textWang, Zhihui, Chaochen Ma, Hang Zhang, and Fei Zhu. "A novel pulse-adaption flow control method for a turbocharger turbine: Elastically restrained guide vane." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 13 (March 2, 2020): 2581–94. http://dx.doi.org/10.1177/0954406220908623.
Full textHatami, M., M. C. M. Cuijpers, and M. D. Boot. "Experimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a Design of Experiment (DoE) approach." Energy Conversion and Management 106 (December 2015): 1057–70. http://dx.doi.org/10.1016/j.enconman.2015.10.040.
Full textEynon, P. A., and A. Whitfield. "The effect of low-solidity vaned diffusers on the performance of a turbocharger compressor." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 211, no. 5 (May 1, 1997): 325–39. http://dx.doi.org/10.1243/0954406971522088.
Full textJiao, K., H. Sun, X. Li, H. Wu, E. Krivitzky, T. Schram, and L. M. Larosiliere. "Numerical investigation of the influence of variable diffuser vane angles on the performance of a centrifugal compressor." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223, no. 8 (August 1, 2009): 1061–70. http://dx.doi.org/10.1243/09544070jauto1202.
Full textZeng, Tao, and Guoming G. Zhu. "Control-oriented turbine power model for a variable-geometry turbocharger." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 232, no. 4 (May 14, 2017): 466–81. http://dx.doi.org/10.1177/0954407017702996.
Full textDumitrache, Constantin, Ioan Calimanescu, and Corneliu Comandar. "Naval Centrifugal Compressor Design Using CAD Solutions." Applied Mechanics and Materials 658 (October 2014): 59–64. http://dx.doi.org/10.4028/www.scientific.net/amm.658.59.
Full textTesfamichael Baheta, Aklilu, S. I. Gilani, and Shaharin Anwar Sulaiman. "Performance Evaluation of a Variable Geometry Gas Turbine in a CHP Plant." Applied Mechanics and Materials 798 (October 2015): 59–63. http://dx.doi.org/10.4028/www.scientific.net/amm.798.59.
Full textGabriel, Holger, Stefan Jacob, Uwe Münkel, Helmut Rodenhäuser, and Hans-Peter Schmalzl. "The turbocharger with variable turbine geometry for gasoline engines." MTZ worldwide 68, no. 2 (February 2007): 7–10. http://dx.doi.org/10.1007/bf03226804.
Full textDambrosio, L., G. Pascazio, and B. Fortunato. "Fuzzy logic controller applied to a variable geometry turbine turbocharger." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, no. 11 (November 1, 2005): 1347–60. http://dx.doi.org/10.1243/095440705x35008.
Full textBahiuddin, Irfan, Saiful Amri Mazlan, Fitrian Imaduddin, and Ubaidillah. "A new control-oriented transient model of variable geometry turbocharger." Energy 125 (April 2017): 297–312. http://dx.doi.org/10.1016/j.energy.2017.02.123.
Full textTang, Huayin, Colin Copeland, Sam Akehurst, Chris Brace, Peter Davies, Ludek Pohorelsky, Les Smith, and Geoff Capon. "A novel predictive semi-physical feed-forward turbocharging system transient control strategy based on mean-value turbocharger model." International Journal of Engine Research 18, no. 8 (October 7, 2016): 765–75. http://dx.doi.org/10.1177/1468087416670052.
Full textWhitfield, A., and A. J. Sutton. "The Effect of Vaneless Diffuser Geometry on the Surge Margin of Turbocharger Compressors." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 203, no. 2 (April 1989): 91–98. http://dx.doi.org/10.1243/pime_proc_1989_203_154_02.
Full textPesiridis, Apostolos, Botev Vassil, Muhammad Padzillah, and Ricardo Martinez-Botas. "A Comparison of flow control devices for variable geometry turbocharger application." International Journal of Automotive Engineering and Technologies 3, no. 1 (April 3, 2014): 1. http://dx.doi.org/10.18245/ijaet.84934.
Full textRajoo, Srithar, Alessandro Romagnoli, and Ricardo F. Martinez-Botas. "Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine." Energy 38, no. 1 (February 2012): 176–89. http://dx.doi.org/10.1016/j.energy.2011.12.017.
Full textTian, Feng, Guo Feng Ren, Bin Yan, Guo Qiang Ao, and Lin Yang. "Optimization of Hybrid Turbocharger Applied on Common Rail Diesel Engine with Exhaust Gas Recirculation." Applied Mechanics and Materials 246-247 (December 2012): 84–88. http://dx.doi.org/10.4028/www.scientific.net/amm.246-247.84.
Full textSalvage, J. W. "Development of a Centrifugal Compressor With a Variable Geometry Split-Ring Pipe Diffuser." Journal of Turbomachinery 121, no. 2 (April 1, 1999): 295–304. http://dx.doi.org/10.1115/1.2841314.
Full textFeneley, Adam J., Apostolos Pesiridis, and Amin Mahmoudzadeh Andwari. "Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review." Renewable and Sustainable Energy Reviews 71 (May 2017): 959–75. http://dx.doi.org/10.1016/j.rser.2016.12.125.
Full textWöhr, Michael, Elias Chebli, Markus Müller, Hans Zellbeck, Johannes Leweux, and Andreas Gorbach. "Development of a turbocharger compressor with variable geometry for heavy-duty engines." International Journal of Engine Research 16, no. 1 (December 17, 2014): 23–30. http://dx.doi.org/10.1177/1468087414562457.
Full textGao, Jie, Ming Wei, Pengfei Liu, Guoqiang Yue, and Qun Zheng. "Improved clearance designs to minimize aerodynamic losses in a variable geometry turbine vane cascade." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, no. 17 (September 8, 2017): 3085–101. http://dx.doi.org/10.1177/0954406217729716.
Full textNugraha, Satria Indra, Budi Setiyono, and Yuli Christyono. "SIMULASI SISTEM KONTROL KONTROL TEKANAN KOMPRESOR PADA ELECTRICALLY ASSISTED TURBOCHARGER DENGAN METODE CASCADE FUZZY-PI." TRANSIENT 7, no. 1 (March 13, 2018): 131. http://dx.doi.org/10.14710/transient.7.1.131-137.
Full textHuang, Qiangqiang, and Xinqian Zheng. "Potential of variable diffuser vanes for extending the operating range of compressors and for improving the torque performance of turbocharged engines." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 4 (August 20, 2016): 555–66. http://dx.doi.org/10.1177/0954407016661440.
Full textSong, Kang, Devesh Upadhyay, and Hui Xie. "A physics-based turbocharger model for automotive diesel engine control applications." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 7 (May 19, 2018): 1667–86. http://dx.doi.org/10.1177/0954407018770569.
Full textMastrovito, M., L. Gaballo, and L. Dambrosio. "Diesel engine variable-geometry turbine turbocharger controlled by a multi-agent-based algorithm." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 222, no. 8 (August 2008): 1459–70. http://dx.doi.org/10.1243/09544070jauto493.
Full textKozak, Dariusz, Paweł Mazuro, and Andrzej Teodorczyk. "Numerical Simulation of Two-Stage Variable Geometry Turbine." Energies 14, no. 17 (August 27, 2021): 5349. http://dx.doi.org/10.3390/en14175349.
Full textPesiridis, Apostolos, and Ricardo F. Martinez-Botas. "Experimental Evaluation of Active Flow Control Mixed-Flow Turbine for Automotive Turbocharger Application." Journal of Turbomachinery 129, no. 1 (February 1, 2005): 44–52. http://dx.doi.org/10.1115/1.2372778.
Full textWirkowski, Paweł. "Modelling the characteristics of axial compressor of variable flow passage geometry, working in the gas turbine engine system." Polish Maritime Research 14, no. 3 (July 1, 2007): 27–32. http://dx.doi.org/10.2478/v10012-007-0015-z.
Full textYin, Yong, Zhengbai Liu, Weilin Zhuge, Rongchao Zhao, Yanting Zhao, Zhen Chen, and Jiao Mi. "Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger." International Journal of Fluid Machinery and Systems 9, no. 4 (December 31, 2016): 332–37. http://dx.doi.org/10.5293/ijfms.2016.9.4.332.
Full textRajamani, R. "Control of a variable-geometry turbocharged and wastegated diesel engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, no. 11 (November 1, 2005): 1361–68. http://dx.doi.org/10.1243/095440705x34964.
Full textChauvin, J., O. Grondin, and P. Moulin. "Control Oriented Model of a Variable Geometry Turbocharger in an Engine with Two EGR Loops." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 66, no. 4 (July 2011): 563–71. http://dx.doi.org/10.2516/ogst/2011103.
Full textChauvin, Jonathan, Olivier Grondin, and Philippe Moulin. "Control oriented model of a variable geometry turbocharger in an engine with two EGR loops." IFAC Proceedings Volumes 42, no. 26 (2009): 64–70. http://dx.doi.org/10.3182/20091130-3-fr-4008.00009.
Full textImakiire, Koichiro, Masanori Kimura, Eito Matsuo, and Bunichi Nagata. "Development of MET-SR-VG Turbocharger Driven by Radial Flow Turbine with Variable Geometry Nozzle." JOURNAL OF THE MARINE ENGINEERING SOCIETY IN JAPAN 26, no. 6 (1991): 287–92. http://dx.doi.org/10.5988/jime1966.26.6_287.
Full textPark, Yeong-Seop, Byoung-Gul Oh, Min-Kwang Lee, and Myoung-Ho SunWoo. "Development of Turbine Mass Flow Rate Model for Variable Geometry Turbocharger Using Artificial Neural Network." Transactions of the Korean Society of Mechanical Engineers B 34, no. 8 (August 1, 2010): 783–90. http://dx.doi.org/10.3795/ksme-b.2010.34.8.783.
Full textJacobs, Timothy J., Chad Jagmin, Wesley J. Williamson, Zoran S. Filipi, Dennis N. Assanis, and Walter Bryzik. "Performance and emission enhancements of a variable geometry turbocharger on a heavy-duty diesel engine." International Journal of Heavy Vehicle Systems 15, no. 2/3/4 (2008): 170. http://dx.doi.org/10.1504/ijhvs.2008.022241.
Full textTsalavoutas, A., K. Mathioudakis, A. Stamatis, and M. Smith. "Identifying Faults in the Variable Geometry System of a Gas Turbine Compressor." Journal of Turbomachinery 123, no. 1 (February 1, 2000): 33–39. http://dx.doi.org/10.1115/1.1330267.
Full textCamporeale, S. M., B. Fortunato, and A. Dumas. "Dynamic modelling of recuperative gas turbines." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 214, no. 3 (May 1, 2000): 213–25. http://dx.doi.org/10.1243/0957650001538317.
Full textAhmed, Fayez Shakil, Salah Laghrouche, Adeel Mehmood, and Mohammed El Bagdouri. "Estimation of exhaust gas aerodynamic force on the variable geometry turbocharger actuator: 1D flow model approach." Energy Conversion and Management 84 (August 2014): 436–47. http://dx.doi.org/10.1016/j.enconman.2014.03.080.
Full textSehra, A., J. Bettner, and A. Cohn. "Design of a High-Performance Axial Compressor for Utility Gas Turbine." Journal of Turbomachinery 114, no. 2 (April 1, 1992): 277–86. http://dx.doi.org/10.1115/1.2929141.
Full textCoppinger, M., and E. Swain. "Performance prediction of an industrial centrifugal compressor inlet guide vane system." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 214, no. 2 (March 1, 2000): 153–64. http://dx.doi.org/10.1243/0957650001538254.
Full textHu, Yang, Li, Li, and Bai. "Intelligent Control Strategy for Transient Response of a Variable Geometry Turbocharger System Based on Deep Reinforcement Learning." Processes 7, no. 9 (September 6, 2019): 601. http://dx.doi.org/10.3390/pr7090601.
Full textSchaffnit, Jochen, Oliver Nelles, Rolf Isermann, and Wolfram Schmid. "Local Linear Model Tree (LOLIMOT) for Nonlinear System Identification of a Turbocharger with Variable Turbine Geometry (VTG)." IFAC Proceedings Volumes 33, no. 15 (June 2000): 615–20. http://dx.doi.org/10.1016/s1474-6670(17)39819-1.
Full textReichert, A. W., and H. Simon. "Design and Flow Field Calculations for Transonic and Supersonic Radial Inflow Turbine Guide Vanes." Journal of Turbomachinery 119, no. 1 (January 1, 1997): 103–13. http://dx.doi.org/10.1115/1.2840999.
Full textSong, Kang, Devesh Upadhyay, and Hui Xie. "An assessment of the impacts of low-pressure exhaust gas recirculation on the air path of a diesel engine equipped with electrically assisted turbochargers." International Journal of Engine Research 22, no. 1 (June 6, 2019): 3–21. http://dx.doi.org/10.1177/1468087419854294.
Full text