Academic literature on the topic 'Turbofan engines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbofan engines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turbofan engines"
Wilde, G. L. "A New Approach to the Design of the Large Turbofan Power Plant." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 209, no. 2 (April 1995): 85–104. http://dx.doi.org/10.1243/pime_proc_1995_209_277_02.
Full textMazzawy, Robert S. "Next Generation of Transport Engines." Mechanical Engineering 132, no. 12 (December 1, 2010): 54. http://dx.doi.org/10.1115/1.2010-dec-6.
Full textCheng, Dingding, Lijun Liu, and Zhen Yu. "A novel multivariable nonlinear robust control design for turbofan engines." Transactions of the Institute of Measurement and Control 44, no. 5 (October 1, 2021): 1029–44. http://dx.doi.org/10.1177/01423312211039641.
Full textJakubowski, Robert. "Study of Bypass Ratio Increasing Possibility for Turbofan Engine and Turbofan with Inter Turbine Burner." Journal of KONES 26, no. 2 (June 1, 2019): 61–68. http://dx.doi.org/10.2478/kones-2019-0033.
Full textAvdeev, S. V. "Mathematical model of turbofan engine weight estimation taking into account the engine configuration and size." VESTNIK of Samara University. Aerospace and Mechanical Engineering 20, no. 1 (April 20, 2021): 5–13. http://dx.doi.org/10.18287/2541-7533-2021-20-1-5-13.
Full textKroeger, Jim. "Large and Small Turbofans." Mechanical Engineering 138, no. 09 (September 1, 2016): 80–82. http://dx.doi.org/10.1115/1.2016-sep-7.
Full textCilgin, Mehmet Emin, and Onder Turan. "Entropy Generation Calculation of a Turbofan Engine: A Case of CFM56-7B." International Journal of Turbo & Jet-Engines 35, no. 3 (July 26, 2018): 217–27. http://dx.doi.org/10.1515/tjj-2017-0053.
Full textSun, Shuang, Yu Liao, Shuo Ding, Yinte Lei, Song Li, Zhijie Hu, and Hualong Dong. "Analysis of the Application and Benefits of Aircraft Electric Wheel Systems during Taxi and Take-Off." International Transactions on Electrical Energy Systems 2023 (November 18, 2023): 1–13. http://dx.doi.org/10.1155/2023/3118713.
Full textLangston, Lee S. "Not So Simple Machines." Mechanical Engineering 135, no. 01 (January 1, 2013): 30–35. http://dx.doi.org/10.1115/1.2013-jan-3.
Full textBakhtyar, Aminullah, Ahmad Farzad Faqiri, Noman Tasal, Mahboobullah Mutahar, and Suhrab Sheybani. "Airflow Simulation in a Turbofan Engine: A Study of Flow Behavior." Indian Journal of Production and Thermal Engineering 3, no. 6 (October 30, 2023): 1–5. http://dx.doi.org/10.54105/ijpte.c7905.103623.
Full textDissertations / Theses on the topic "Turbofan engines"
Joo, Won-Gu. "Intake/engine flowfield coupling in turbofan engines." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319865.
Full textLambie, David. "Inlet distortion and turbofan engines." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305300.
Full textSantos, Gustavo Di Fiore dos. "A methodology for noise prediction of turbofan engines." Instituto Tecnológico de Aeronáutica, 2006. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=291.
Full textPietroniro, Asuka Gabriele. "Modelling coaxial jets relevant to turbofan jet engines." Thesis, KTH, Mekanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200909.
Full textPietroniro, Asuka Gabrielle. "Modelling coaxial jets relevat to turbofan jet engines." Thesis, KTH, Mekanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-204020.
Full textSimuleringar av subsoniska turbulenta koaxiala varma flöden genomfördes på två typer avostrukturerade nät inom ramen för STAR-CCM+. Studiefallet är baserat på en modell av enturbofläktmotor för ett typiskt trafikflygplan, med en inre samt yttre dysa och med ett bypassförhållandeav fem. De två beräkningsnät som används är ett polyedriskt nät, lämplig förkomplexa ytor, och ett trimmat nät huvudsakligen uppbyggt av sexsidiga celler. Känslighetenav studiefallet beroende på olika indata intygas med hjälp av andra och tredje ordningens”upwind-schemes”, där turbulensen modelleras med en SST k-omega modell. Projektet visarsig vara en giltig förstudie för en steadystate-lösning på vilken en aeroakustisk analys skullekunna baseras i framtida arbeten.
Kapekov, Ali. "Development of an innovative cooling concept for turbofan engines." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246103.
Full textDet här examensarbetet har genomförts för att uppfylla krav för dubbelexamen inom fordonsteknik med specialisering flyg och rymdteknik på KTH i Sverige och Ecole Centrale Lyon i Frankrike. Rapporten fokuserar på ett forskningsprojekt som behandlar teknologi för hantering av värmeöverföring i nuvarande eller framtida flygmotorer som används inom civil luftfart. Kylningen och ventilationen av flygmotorer och dess integration betraktas som särskilt krävande och komplext. Inom projektet har en optimering med tillhörande analyser har genomförts och resultat av dessa beskrivs i en uttömmande rapport tillgänglig för internt bruk på Airbus. Endast en kortfattad sammanställning presenteras i denna rapport som är tillgänglig för allmänhet. För att läsaren ska bekantas djupare med två-fas värmeöverföring, värmerörsteknologi (”heat pipes”) förklaras utförligt i rapporten. Ett passande värmerör design har tagits fram och modellerats med hjälp av 1D simuleringsverktyg LMS Imagine Lab AMESim från Siemens PLM. Den modellerade värmerör har illustrerats och korrelerats med experimentella värden för kända kommersiella värmerör. Slutligen, ytterligare två två-fas värmeöverföringssystem analyseras och noteras med en kort beskrivning av teorin som ledde till modellanpassning och GUI-utveckling i Matlab programmet.
Kwan, Pok Wang. "Flow management in heat exchanger installations for intercooled turbofan engines." Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711622.
Full textAlmeida, Odenir de. "Aeroacoustics of dual-stream jets with application to turbofan engines." Instituto Tecnológico de Aeronáutica, 2009. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=805.
Full textAdetifa, Oluwaseun Emmanuel. "Prediction of supersonic fan noise generated by turbofan aircraft engines." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/388030/.
Full textSpillere, André Mateus Netto. "Towards optimal design of acoustic liners in turbofan aero-engines." reponame:Repositório Institucional da UFSC, 2017. https://repositorio.ufsc.br/xmlui/handle/123456789/182589.
Full textMade available in DSpace on 2018-01-09T03:20:40Z (GMT). No. of bitstreams: 1 348526.pdf: 3551847 bytes, checksum: e230fe18007e16805c64bbe54b532888 (MD5) Previous issue date: 2017
Motores turbofan são largamente utilizados em aeronaves comerciais e são uma das principais fontes de ruído. O ruído desse motores pode ser dividido em diferentes componentes, sendo que o ruído proveniente do fan é de grande importância no processo de certificação da aeronave. Este é geralmente dominado pela presença de tons e suas harmônicas, tornando desejável utilizar um tratamento acústico com grande atenuação em uma faixa estreita de frequência. Isto é obtido por meio de liners acústicos, que podem ser interpretados como um arranjo de ressonadores de Helmholtz. Tradicionalmente, os liners são caracterizados por meio de sua impedância acústica. Esta abordagem possui várias vantagens: (i) a impedância acústica pode ser estimada por modelos semi-empíricos de baixo custo; (ii) várias técnicas experimentais são reportadas na literatura para extrair a impedância do liner, como os métodos inversos, diretos e técnicas in situ; (iii) o conceito de impedância ótima para dutos pode ser desenvolvida, e portanto o liner pode ser projetado para alcançar a impedância ótima; (iv) a previsão de atenuação sonora em dutos é baseada na impedância acústica do liner. Estes quatro itens são abordados neste trabalho. Primeiramente, modelos semi-empíricos preditivos de liner são analisados e comparados com resultados experimentais. Os modelos são baseados na soma de diversos efeitos e dão uma ideia de quais afetam a impedância acústica do liner. Na sequência, técnicas experimentais são investigadas. O método clássico de acoplamento modal é modificado para incluir um modelo de impedância, resultando em curvas contínuas. Além disso, efeitos de condição de contorno na edução de impedância são considerados, e alternativas à condição de contorno de Ingard-Myers são implementadas. A diferença entre resultados na impedância quando a fonte sonora está a montante ou a jusante da amostra também é discutida. Em seguida, o conceito de impedância ótima para dutos circulares na ausência e presença de escoamento uniforme é apresentado, assim como aplicações para geometria de motores aeronáuticos turbofan. Finalmente, a previsão de atenuação sonora baseada em escoamento uniforme e cisalhante é comparada.
Abstract : Turbofan aero-engines are largely employed in commercial aircraft and are one of the main sources of noise. Engine noise can be divided into several components, and fan noise plays a major role in the aircraft certification process. It is generally dominated by the presence of a tone and its harmonics, making desirable to use an acoustic treatment with large attenuation at a narrow bandwidth. This is accomplished by means of acoustic liners, which can be seen as an array of Helmholtz resonators. Usually, the liner is characterized by its acoustic impedance. This approach has several advantages: (i) the acoustic impedance can be predicted by low-cost semi-empirical models; (ii) many experimental techniques are reported in the literature to extract the liner impedance, such as inverse methods, straightforward methods and in situ techniques; (iii) the concept of optimal impedance for ducts can be developed, and therefore the liner can be designed to achieve the optimal impedance; (iv) the sound attenuation prediction in ducts is based on the liner acoustic impedance. These four items are covered in this work. Firstly, liner prediction semi-empirical models are analysed and compared to experimental results. The models are based on the sum of several effects and give an insight into what alters the liner acoustic impedance. On the following, the experimental techniques are investigated. The classical mode matching method is modified to include an impedance model, resulting in smooth impedance curves. Also, the effect of boundary conditions in the educed impedance is considered, and alternatives to the Ingard-Myers boundary condition are implemented. The difference between upstream and downstream acoustic source positions in the educed impedance is also discussed. Next, the concept of optimal impedance for circular ducts in the absence and presence of mean flow is presented, as well some applications to turbofan aero-engine geometries. Finally, sound attenuation predictions based on uniform and shear flow are compared.
Books on the topic "Turbofan engines"
Richter, Hanz. Advanced Control of Turbofan Engines. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1171-0.
Full textMeyer, Harold D. Aeroacoustic analysis of turbofan noise generation. Cleveland, Ohio: Lewis Reserch Center, 1996.
Find full textA, Kirchgessner Thomas, and United States. National Aeronautics and Space Administration., eds. Airflow calibration and exhaust pressure temperature survey of an F-404, S/N 215-209, turbofan engine. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Find full textHang kong wo lun feng shan fa dong ji. [Peking]: Guo fang gong ye chu ban she, 1985.
Find full textChristopher, Snyder, Knip Gerald, and United States. National Aeronautics and Space Administration., eds. Advanced core technology: Key to subsonic propulsion benefits. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textA, Wynosky T., and United States. National Aeronautics and Space Administration., eds. Energy efficient engine program: Advanced turbofan nacelle definition study. [Washington, DC: National Aeronautics and Space Administration, 1985.
Find full textLitt, John. A real-time simulator of a turbofan engine. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textC, DeLaat John, Merrill Walter C, United States. Army Aviation Research and Technology Activity., and United States. National Aeronautics and Space Administration., eds. A real-time simulator of a turbofan engine. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textC, DeLaat John, Merrill Walter C, United States. Army Aviation Research and Technology Activity., and United States. National Aeronautics and Space Administration., eds. A real-time simulator of a turbofan engine. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textBook chapters on the topic "Turbofan engines"
Greatrix, David R. "Turbofan Engines." In Powered Flight, 233–68. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2485-6_7.
Full textEl-Sayed, Ahmed F. "Turbine-Based Engines: Turbojet, Turbofan, and Turboramjet Engines." In Fundamentals of Aircraft and Rocket Propulsion, 403–529. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6796-9_6.
Full textRichter, Hanz. "Sliding Mode Control of Turbofan Engines." In Advanced Control of Turbofan Engines, 111–39. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1171-0_6.
Full textRichter, Hanz. "Introduction." In Advanced Control of Turbofan Engines, 1–18. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1171-0_1.
Full textRichter, Hanz. "Engine Models and Simulation Tools." In Advanced Control of Turbofan Engines, 19–33. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1171-0_2.
Full textRichter, Hanz. "Engine Control by Classical Methods." In Advanced Control of Turbofan Engines, 35–50. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1171-0_3.
Full textRichter, Hanz. "Engine Control by Robust State Feedback." In Advanced Control of Turbofan Engines, 51–90. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1171-0_4.
Full textRichter, Hanz. "Gain Scheduling and Adaptation." In Advanced Control of Turbofan Engines, 91–110. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1171-0_5.
Full textRichter, Hanz. "Engine Limit Management with Linear Regulators." In Advanced Control of Turbofan Engines, 141–76. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1171-0_7.
Full textRichter, Hanz. "Engine Limit Management with Sliding Modes." In Advanced Control of Turbofan Engines, 177–201. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1171-0_8.
Full textConference papers on the topic "Turbofan engines"
Pakmehr, Mehrdad, Marion Mounier, Nathan Fitzgerald, George Kiwada, James Paduano, Eric Feron, and Alireza Behbahani. "Distributed Control of Turbofan Engines." In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-5532.
Full textLuis Fajardo Rodriguez and Ruxandra Mihaela Botez. "Civil turbofan engines thrust generic model." In IECON 2012 - 38th Annual Conference of IEEE Industrial Electronics. IEEE, 2012. http://dx.doi.org/10.1109/iecon.2012.6389521.
Full textLin, Ching-Fang, and Jianhua Ge. "H-infinity control for turbofan engines." In Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4296.
Full textFeng, Zhengping, Jianguo Sun, and Qiuhong Li. "ZP/LTR Control for Turbofan Engines." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0043.
Full textTomita, Jesui´no Takachi, Cleverson Bringhenti, Joa˜o Roberto Barbosa, and Antonio Batista de Jesus. "Nacelle Design for Mixed Turbofan Engines." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91212.
Full textKurzke, Joachim. "Fundamental Differences Between Conventional and Geared Turbofans." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59745.
Full textRamdin, Shivan, Wilfried Visser, Juan Regueiro, and Tim Rootliep. "Systematic Approach for Modelling Modern Turbofan Engines." In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-103548.
Full textTong, Michael T. "Aero-Engines AI - A Machine-Learning App for Aircraft Engine Concepts Assessment." In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-102024.
Full textAguilar, Rene, Cesar Celis, and Marcio Pontes. "Numerical Study of the Effects of Confined Airfoils Usage in High Bypass Ratio Turbofan Engines." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24196.
Full textDebiasi, Marco, and Dimitri Papamoschou. "Cycle analysis for quieter supersonic turbofan engines." In 37th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3749.
Full textReports on the topic "Turbofan engines"
Dugas, R. M. Effects of Test Cell Recirculation on High-Bypass Turbofan Engines during Simulated Altitude Tests. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada171418.
Full textChippa, Christopher. Sea Level Operation Demonstration of F404-GE-400 Turbofan Engine with JP-5/Bio-Fuel Mixture. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada517278.
Full text