Academic literature on the topic 'Turbojet, Modeling, Control, Fuzzy Logic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbojet, Modeling, Control, Fuzzy Logic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turbojet, Modeling, Control, Fuzzy Logic"
Whalen, Thomas, Brian Schott, and Gwangyong Gim. "Control of error in fuzzy logic modeling." Fuzzy Sets and Systems 80, no. 1 (May 1996): 23–35. http://dx.doi.org/10.1016/0165-0114(95)00280-4.
Full textPedrycz, Witold. "Logic-driven fuzzy modeling with fuzzy multiplexers." Engineering Applications of Artificial Intelligence 17, no. 4 (June 2004): 383–91. http://dx.doi.org/10.1016/j.engappai.2004.04.011.
Full textVachtsevanos, George. "Large-scale systems: modeling, control, and fuzzy logic." Automatica 37, no. 9 (September 2001): 1500–1502. http://dx.doi.org/10.1016/s0005-1098(01)00108-x.
Full textGhaemi, Sehraneh, Sohrab Khanmohammadi, and Mohammadali Tinati. "Driver's Behavior Modeling Using Fuzzy Logic." Mathematical Problems in Engineering 2010 (2010): 1–29. http://dx.doi.org/10.1155/2010/172878.
Full textCigánek, Ján, Filip Noge, and Štefan Kozák. "Modeling and Control of Mechatronic Systems Using Fuzzy Logic." International Review of Automatic Control (IREACO) 7, no. 1 (January 31, 2014): 45. http://dx.doi.org/10.15866/ireaco.v7i1.1291.
Full textToumodge, S. "Large-Scale Systems: Modeling, Control, and Fuzzy Logic [Bookshelf]." IEEE Control Systems 18, no. 3 (June 1998): 84. http://dx.doi.org/10.1109/mcs.1998.687623.
Full textBESSAAD, Taieb. "Modeling and Control of multimachines System Using Fuzzy Logic." PRZEGLĄD ELEKTROTECHNICZNY 1, no. 5 (May 5, 2019): 143–48. http://dx.doi.org/10.15199/48.2019.05.34.
Full textZhi Liu and Han-Xiong Li. "A probabilistic fuzzy logic system for modeling and control." IEEE Transactions on Fuzzy Systems 13, no. 6 (December 2005): 848–59. http://dx.doi.org/10.1109/tfuzz.2005.859326.
Full textKarthikeyan, R., R. K. Ganesh Ram, and V. Kalaichelvi. "Modeling and Control Techniques for Microstructure Development." Applied Mechanics and Materials 541-542 (March 2014): 317–23. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.317.
Full textJomaa, M., M. Abbes, F. Tadeo, and A. Mami. "Greenhouse Modeling, Validation and Climate Control based on Fuzzy Logic." Engineering, Technology & Applied Science Research 9, no. 4 (August 10, 2019): 4405–10. http://dx.doi.org/10.48084/etasr.2871.
Full textDissertations / Theses on the topic "Turbojet, Modeling, Control, Fuzzy Logic"
Polat, Cuma. "An Electronic Control Unit Design For A Miniature Jet Engine." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611442/index.pdf.
Full textAntão, Rómulo José Magalhães Martins. "Type-2 fuzzy logic: uncertain systems' modeling and control." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18041.
Full textA última fronteira da Inteligência Artificial será o desenvolvimento de um sistema computacional autónomo capaz de "rivalizar" com a capacidade de aprendizagem e de entendimento humana. Ainda que tal objetivo não tenha sido até hoje atingido, da sua demanda resultam importantes contribuições para o estado-da-arte tecnológico atual. A Lógica Difusa é uma delas que, influenciada pelos princípios fundamentais da lógica proposicional do raciocínio humano, está na base de alguns dos sistemas computacionais "inteligentes" mais usados da atualidade. A teoria da Lógica Difusa é uma ferramenta fundamental na suplantação de algumas das limitações inerentes à representação de informação incerta em sistemas computacionais. No entanto esta apresenta ainda algumas lacunas, pelo que diversos melhoramentos à teoria original têm sido introduzidos ao longo dos anos, sendo a Lógica Difusa de Tipo-2 uma das mais recentes propostas. Os novos graus de liberdade introduzidos por esta teoria têm-se demonstrado vantajosos, particularmente em aplicações de modelação de sistemas não-lineares complexos. Uma das principais vantagens prende-se com o aumento da robustez dos modelos assim desenvolvidos comparativamente àqueles baseados nos princípios da Lógica Difusa de Tipo-1 sem implicar necessariamente um aumento da sua dimensão. Tal propriedade é particularmente vantajosa considerando que muitas vezes estes modelos são utilizados como suporte ao desenvolvimento de sistemas de controlo que deverão ser capazes de assegurar o comportamento ótimo de um processo em condições de operação variáveis. No entanto, o estado-da-arte da teoria de controlo de sistemas baseada em modelos não tem integrado todos os melhoramentos proporcionados pelo desenvolvimento de modelos baseados nos princípios da Lógica Difusa de Tipo-2. Por essa razão, a presente tese propõe-se a abordar este tópico desenvolvendo uma metodologia de síntese de Controladores Preditivos baseados em modelos Takagi-Sugeno seguindo os princípios da Lógica Difusa de Tipo-2. De modo a cumprir este objetivo, quatro linhas de investigação serão debatidas neste trabalho.Primeiramente proceder-se-á ao desenvolvimento de uma metodologia de treino de Modelos Difusos de Tipo-2 simplificada, focada em dois paradigmas: manter a clareza dos intervalos de incerteza introduzidos sobre um Modelo Difuso de Tipo-1; assegurar a validade dos diversos modelos localmente lineares que constituem a estrutura Takagi- Sugeno, de modo a torná-los adequados a métodos de síntese de controladores baseados em modelos. O modelo desenvolvido é tipicamente utilizado para extrapolar o comportamento do sistema numa janela temporal futura. No entanto, quando usados em aproximações de sistemas não lineares, os modelos do tipo Takagi-Sugeno estabelecem um compromisso entre exatidão e complexidade computacional. Assim, é proposta a utilização dos princípios da Lógica Difusa de Tipo-2 para reduzir a influência dos erros de modelação nas estimações obtidas através do ajuste dos intervalos de incerteza dos parâmetros do modelo. Com base na estrutura Takagi-Sugeno, um método de linearização local de modelos não-lineares será utilizado em cada ponto de funcionamento do sistema de modo a obter os parâmetros necessários para a síntese de um controlador otimizado numa janela temporal futura de acordo com os princípios da teoria de Controlo Preditivo Generalizado - um dos algoritmos de Controlo Preditivo mais utilizado na indústria. A qualidade da resposta do sistema em malha fechada e a sua robustez a perturbações serão então comparadas com implementações do mesmo algoritmo baseadas em métodos de modelação mais simples. Para concluir, o controlador proposto será implementado num System-on-Chip baseado no core ARM Cortex-M4. Com o propósito de facilitar a realização de testes de implementação de algoritmos de controlo em sistemas embutidos, será apresentada também uma plataforma baseada numa arquitetura Processor-In-the-Loop, que permitirá avaliar a execução do algoritmo proposto em sistemas computacionais com recursos limitados, aferindo a existência de possíveis limitações antes da sua aplicação em cenários reais. A validade do novo método proposto é avaliada em dois cenários de simulação comummente utilizados em testes de sistemas de controlo não-lineares: no Controlo da Temperatura de uma Cuba de Fermentação e no Controlo do Nível de Líquidos num Sistema de Tanques Acoplados. É demonstrado que o algoritmo de controlo desenvolvido permite uma melhoria da performance dos processos supramencionados, particularmente em casos de mudança rápida dos regimes de funcionamento e na presença de perturbações ao processo não medidas.
The development of an autonomous system capable of matching human knowledge and learning capabilities embedded in a compact yet transparent way has been one of the most sought milestones of Artificial Intelligence since the invention of the first mechanical general purpose computers. Such accomplishment is yet to come but, in its pursuit, important contributions to the state-of-the-art of current technology have been made. Fuzzy Logic is one of such, supporting some of the most used frameworks for embedding human-like knowledge in computational systems. The theory of Fuzzy Logic overcame some of the difficulties that the inherent uncertainty in information representations poses to the development of computational systems. However, it does present some limitations so, aiming to further extend its capabilities, several improvements over its original formalization have been proposed over the years such as Type-2 Fuzzy Logic - one of its most recent advances. The additional degrees of freedom of Type-2 Fuzzy Logic are showing greater potential to supplant its original counterpart, especially in complex non-linear modeling tasks. One of its main outcomes is its capability of improving the developed model’s robustness without necessarily increasing its dimensionality comparatively to a Type-1 Fuzzy Model counterpart. Such feature is particularly advantageous if one considers these model as a support for developing control systems capable of maintaining a process’s optimal performance over changing operating conditions. However, state-of-the art model-based control theory does not seem to be taking full advantage of the improvements achieved with the development of Type-2 Fuzzy Logic based models. Therefore, this thesis proposes to address this problem by developing a Model Predictive Control system supported by Interval Type-2 Takagi- Sugeno Fuzzy Models. To accomplish this goal, four main research directions are covered in this work.Firstly, a simpler method for training a Type-2 Takagi-Sugeno Fuzzy Model focused on two main paradigms is proposed: maintaining a meaningful interpretation of the uncertainty intervals embedded over an estimated Type-1 Fuzzy Model; ensuring the validity of several locally linear models that constitute the Takagi-Sugeno structure in order to make them suitable for model-based control approaches. Based on the developed model, a multi-step ahead estimation of the process behavior is extrapolated. However, as Takagi-Sugeno Fuzzy Models establish a trade-off between accuracy and computational complexity when used as a non-linear process approximation, it is proposed to apply the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on the obtained estimations by adjusting the model parameters’ uncertainty intervals. Supported by the developed Type-2 Takagi-Sugeno Fuzzy Model, a locally linear approximation of each current operation point is used to obtain the optimal control law over a prediction horizon according to the principles of Generalized Predictive Control - one of the most used Model Predictive Control algorithms in Industry. The improvements in terms of closed loop tracking performance and robustness to unmodeled operation conditions are then assessed comparatively to Generalized Predictive Control implementations based on simpler modeling approaches. Ultimately, the proposed control system is implemented in a general purpose System-on-a-Chip based on a ARM Cortex-M4 core. A Processor-In-the-Loop testing framework, developed to support the implementation of control loops in embedded systems, is used to evaluate the algorithm’s turnaround time when executed in such computationally constrained platform, assessing its possible limitations before deployment in real application scenarios. The applicability of the new methods introduced in this thesis is illustrated in two simulated processes commonly used in non-linear control benchmarking: the Temperature Control of a Fermentation Reactor and the Liquid Level Control of a Coupled Tanks System. It is shown that the developed control system achieves an improved closed loop performance of the above mentioned processes, particularly in the cases of quick changes in the operation regime and in presence of unmeasured external disturbances.
Soufian, Majeed. "Hard and soft computing techniques for non-linear modeling and control with industrial applications." Thesis, Manchester Metropolitan University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273053.
Full textEmami, Mohammad Reza. "Systematic methodology of fuzzy-logic modeling and control and application to robotics." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ28276.pdf.
Full textShook, David Adam. "Control of a benchmark structure using GA-optimized fuzzy logic control." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1088.
Full textWijayasekara, Dumidu S. "IMPROVING UNDERSTANDABILITY AND UNCERTAINTY MODELING OF DATA USING FUZZY LOGIC SYSTEMS." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4126.
Full textSoderstrom, David. "Fuzzy logic modeling and intelligent sliding mode control techniques for the individualization of theophylline therapy to pediatric patients." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/19097.
Full textMok, Tsz-kin, and 莫子建. "Modeling, analysis and control design for the UPFC with fuzzy theory and genetic algorithm application." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31224969.
Full textArsava, Kemal Sarp. "Modeling, Control and Monitoring of Smart Structures under High Impact Loads." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/105.
Full textTugsal, Umut. "FAULT DIAGNOSIS OF ELECTRONIC FUEL CONTROL (EFC) VALVES VIA DYNAMIC PERFORMANCE TEST METHOD." ProQuest, 2009. http://hdl.handle.net/1805/2094.
Full textElectronic Fuel Control (EFC) valve regulates fuel flow to the injector fuel supply line in the Cummins Pressure Time (PT) fuel system. The EFC system controls the fuel flow by means of a variable orifice that is electrically actuated. The supplier of the EFC valves inspects all parts before they are sent out. Their inspection test results provide a characteristic curve which shows the relationship between pressure and current provided to the EFC valve. This curve documents the steady state characteristics of the valve but does not adequately capture its dynamic response. A dynamic test procedure is developed in order to evaluate the performance of the EFC valves. The test itself helps to understand the effects that proposed design changes will have on the stability of the overall engine system. A by product of this test is the ability to evaluate returned EFC valves that have experienced stability issues. The test determines whether an EFC valve is faulted or not before it goes out to prime time use. The characteristics of a good valve and bad valve can be observed after the dynamic test. In this thesis, a mathematical model has been combined with experimental research to investigate and understand the behavior of the characteristics of different types of EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. System Identification has been addressed to determine the transfer functions of the different types of EFC valves that were experimented. Methods have been used both in frequency domain as well as time domain. Also, based on the characteristic patterns exhibited by the EFC valves, fuzzy logic has been implemented for the use of pattern classification.
Books on the topic "Turbojet, Modeling, Control, Fuzzy Logic"
Nguyen, Hung T. Fuzzy Systems: Modeling and Control. Boston, MA: Springer US, 1998.
Find full textJamshidi, Mohammad. Large-scale systems: Modeling, control, and fuzzy logic. Upper Saddle River, NJ: Prentice Hall, 1997.
Find full text1944-, Nguyen Hung T., and Prasad Nadipuram R, eds. Fuzzy modeling and control: Selected works of M. Sugeno. Boca Raton: CRC Press, 1999.
Find full textRobyns, Benoit. Vector Control of Induction Machines: Desensitisation and Optimisation Through Fuzzy Logic. London: Springer London, 2012.
Find full textTucci, Mario, and Marco Garetti, eds. Proceedings of the third International Workshop of the IFIP WG5.7. Florence: Firenze University Press, 2002. http://dx.doi.org/10.36253/88-8453-042-3.
Full textJamshidi, Mohammad. Large-Scale Systems: Modeling, Control and Fuzzy Logic. Prentice Hall, 1996.
Find full textMartins, Rui, Rómulo Antão, Alexandre Mota, and José Tenreiro Machado. Type-2 Fuzzy Logic: Uncertain Systems’ Modeling and Control. Springer, 2017.
Find full textMartins, Rui, Rómulo Antão, Alexandre Mota, and José Tenreiro Machado. Type-2 Fuzzy Logic: Uncertain Systems’ Modeling and Control. Springer, 2018.
Find full textMartins, Rui, Rómulo Antão, and Alexandre Mota. Type-2 Fuzzy Logic: Uncertain Systems' Modeling and Control. Springer, 2017.
Find full textBook chapters on the topic "Turbojet, Modeling, Control, Fuzzy Logic"
Al-Khalidy, Mohammed Majid Mohammed, and Fatma Abdulnabi Al-attar. "Step by Step Modeling and Tuning for Fuzzy Logic Controller." In Informatics in Control, Automation and Robotics, 81–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25899-2_12.
Full textValera, Leobardo, Angel Garcia Contreras, and Martine Ceberio. "“On-the-fly” Parameter Identification for Dynamic Systems Control, Using Interval Computations and Reduced-Order Modeling." In Fuzzy Logic in Intelligent System Design, 293–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67137-6_33.
Full textReel, Smarti, and Ashok Kumar Goel. "Artificial Neural Networks and Fuzzy Logic in Process Modeling and Control." In Communications in Computer and Information Science, 808–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25734-6_144.
Full textJoo, Y. H., H. S. Hwang, K. B. Woo, and K. B. Kim. "Fuzzy System Modeling and its Application to Mobile Robot Control." In Fuzzy Logic and its Applications to Engineering, Information Sciences, and Intelligent Systems, 147–56. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0125-4_14.
Full textCazarez-Castro, Nohe R., Luis T. Aguilar, Oscar Castillo, and Antonio Rodríguez-Dŕaz. "Controlling Unstable Non-Minimum-Phase Systems with Fuzzy Logic: The Perturbed Case." In Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, 245–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04514-1_14.
Full textMartinez, Ricardo, Oscar Castillo, Luis T. Aguilar, and Antonio Rodriguez. "Evolutionary Optimization of Type-2 Fuzzy Logic Systems Applied to Linear Plants." In Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, 17–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04514-1_2.
Full textVigneysh, T., and N. Kumarappan. "Dynamic Modeling and Control of Utility-Interactive Microgrid Using Fuzzy Logic Controller." In Lecture Notes in Electrical Engineering, 97–106. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4852-4_9.
Full textMendez, Gerardo M., and Ma De Los Angeles Hernandez. "Hybrid Interval Type-1 Non-singleton Type-2 Fuzzy Logic Systems Are Type-2 Adaptive Neuro-fuzzy Inference Systems." In Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, 53–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04514-1_4.
Full textCiabattoni, Lucio, Massimo Grisostomi, Gianluca Ippoliti, and Sauro Longhi. "Household Electrical Consumptions Modeling and Management Through Neural Networks and Fuzzy Logic Approaches." In Complex System Modelling and Control Through Intelligent Soft Computations, 437–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12883-2_16.
Full textSolano-Aragón, Cinthya, and Arnulfo Alanis. "Multi-Agent System with Fuzzy Logic Control for Autonomous Mobile Robots in Known Environments." In Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, 33–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04514-1_3.
Full textConference papers on the topic "Turbojet, Modeling, Control, Fuzzy Logic"
Toprak, Suha, Aydan Erkmen, and I. Akmandor. "Identification and control of a radial turbojet with neural network and fuzzy logic." In 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1016.
Full textAmirante, Riccardo, Luciano Andrea Catalano, and Paolo Tamburrano. "Thrust Control of Small Turbojet Engines Using Fuzzy Logic: Design and Experimental Validation." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68892.
Full textAmirante, Riccardo, Luciano Andrea Catalano, and Paolo Tamburrano. "An Adaptive Fuzzy Logic Algorithm for the Thrust Control of a Small Turbojet Engine." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22510.
Full textZalapa, Salvador Alvarez, and Roberto Tapia Sanchez. "Exoskeleton robot modeling and Fuzzy Logic Control." In 2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, 2016. http://dx.doi.org/10.1109/ropec.2016.7830604.
Full textÜşenmez, Serdar, Sinan Ekinci, Oğuz Uzol, and İlkay Yavrucuk. "Application of a Fuzzy Logic Controller for Speed Control on a Small-Scale Turbojet Engine." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-27158.
Full textLin, Yueh-Jaw, and Tian-Soon Lee. "Modeling for Fuzzy Logic Control of Deformable Manipulators." In 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4793047.
Full textKrishnakumar, K., P. Gonsalves, A. Satyadas, and G. Zacharias. "Hybrid fuzzy logic flight controller synthesis via pilot modeling." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-3227.
Full textDeng, Lujuan, and Huaishan Wang. "Fuzzy logic technology for modeling of greenhouse crop transpiration rate." In Sixth International Symposium on Instrumentation and Control Technology: Sensors, Automatic Measurement, Control, and Computer Simulation, edited by Jiancheng Fang and Zhongyu Wang. SPIE, 2006. http://dx.doi.org/10.1117/12.718289.
Full textKebairi, A., M. Becherif, and M. El Bagdouri. "Modeling and PI-Fuzzy logic controller of the Pierburg mechatronic actuator." In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5990978.
Full textDariush, Behzad, and Kikuo Fujimura. "Fuzzy Logic Based Control Model of Human Postural Dynamics." In Digital Human Modeling For Design And Engineering Conference And Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-2178.
Full textReports on the topic "Turbojet, Modeling, Control, Fuzzy Logic"
Rajagopalan, A., G. Washington, G. Rizzoni, and Y. Guezennec. Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/15006009.
Full text