Journal articles on the topic 'Turboshaft engine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Turboshaft engine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bester, Paul, F. C. Aggenbacht, and Imdaadulah Adam. "Design and additive manufacturing of Ti-6Al-4V test-piece for use in aeronautical turboshaft engine heat exchanger." MATEC Web of Conferences 406 (2024): 01002. https://doi.org/10.1051/matecconf/202440601002.
Full textVladov, Serhii, Ruslan Yakovliev, Maryna Bulakh, and Victoria Vysotska. "Neural Network Approximation of Helicopter Turboshaft Engine Parameters for Improved Efficiency." Energies 17, no. 9 (2024): 2233. http://dx.doi.org/10.3390/en17092233.
Full textJi, Zifei, Ruize Duan, Renshuai Zhang, Huiqiang Zhang, and Bing Wang. "Comprehensive Performance Analysis for the Rotating Detonation-Based Turboshaft Engine." International Journal of Aerospace Engineering 2020 (July 2, 2020): 1–11. http://dx.doi.org/10.1155/2020/9587813.
Full textKozak, Dariusz, and Paweł Mazuro. "Review of Small Gas Turbine Engines and Their Adaptation for Automotive Waste Heat Recovery Systems." International Journal of Turbomachinery, Propulsion and Power 5, no. 2 (2020): 8. http://dx.doi.org/10.3390/ijtpp5020008.
Full textHocko, Marián, and Samer Al-Rabeei. "Impact of dust erosion on the reduction of axial compressor efficiency of a turboshaft engine and on the stability of its operation." MATEC Web of Conferences 367 (2022): 00008. http://dx.doi.org/10.1051/matecconf/202236700008.
Full textKazhaev, V. P., D. Y. Kiselev, and Y. V. Kiselev. "DIAGNOSTIC MODEL OF HELICOPTER TURBOSHAFT ENGINE." Izvestiya of Samara Scientific Center of the Russian Academy of Sciences 25, no. 1 (2023): 99–106. http://dx.doi.org/10.37313/1990-5378-2023-25-1-99-106.
Full textCzarnecki, Michal, John Olsen, and Ruixian Ma. "PZL-10 Turboshaft Engine–System Design Review." Journal of KONES 26, no. 1 (2019): 23–29. http://dx.doi.org/10.2478/kones-2019-0003.
Full textDobromirescu, Cristian, and Valeriu Vilag. "Energy conversion and efficiency in turboshaft engines." E3S Web of Conferences 85 (2019): 01001. http://dx.doi.org/10.1051/e3sconf/20198501001.
Full textWelch, G. E., S. M. Jones, and D. E. Paxson. "Wave-Rotor-Enhanced Gas Turbine Engines." Journal of Engineering for Gas Turbines and Power 119, no. 2 (1997): 469–77. http://dx.doi.org/10.1115/1.2815598.
Full textRemchukov, S. S., V. S. Lomazov, R. N. Lebedinskiy, I. V. Demidyuk, and I. S. Ptitsyn. "Special Aspects of Designing High Temperature Plate Heat Exchangers for Small Gas Turbine Engines." Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no. 3 (142) (September 2022): 57–70. http://dx.doi.org/10.18698/0236-3941-2022-3-57-70.
Full textYepifanov, Sergiy, та Oleksii Bondarenko. "Формування математичної моделі турбовального двигуна". Aerospace Technic and Technology, № 4sup1 (24 серпня 2023): 85–94. http://dx.doi.org/10.32620/aktt.2023.4sup1.12.
Full textWang, Yong, Qiangang Zheng, Haibo Zhang, and Mingyang Chen. "The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression." Journal of Low Frequency Noise, Vibration and Active Control 39, no. 4 (2019): 1145–58. http://dx.doi.org/10.1177/1461348419847010.
Full textFilippone, Antonio, and Nicholas Bojdo. "Turboshaft engine air particle separation." Progress in Aerospace Sciences 46, no. 5-6 (2010): 224–45. http://dx.doi.org/10.1016/j.paerosci.2010.02.001.
Full textZhang, Mengwei, Zhixiang Lin, Haiyang Huang, and Tianhong Zhang. "Design and verification of model predictive control for micro-turboshaft engine." Advances in Mechanical Engineering 11, no. 12 (2019): 168781401989019. http://dx.doi.org/10.1177/1687814019890198.
Full textWu, Heng, Shufan Zhao, Jijun Zhang, Bo Sun, and Hanqiang Song. "Gas turbine power calculation method of turboshaft based on simulation and performance model." MATEC Web of Conferences 189 (2018): 02003. http://dx.doi.org/10.1051/matecconf/201818902003.
Full textHocko, Marián, and Samer Al-Rabeei. "Analysis of unstable mode of a free gas turbine of turbo-compressors engines." MATEC Web of Conferences 345 (2021): 00009. http://dx.doi.org/10.1051/matecconf/202134500009.
Full textWei, Zhengchao, Yue Ma, Changle Xiang, and Dabo Liu. "Power Prediction-Based Model Predictive Control for Energy Management in Land and Air Vehicle with Turboshaft Engine." Complexity 2021 (August 27, 2021): 1–24. http://dx.doi.org/10.1155/2021/2953241.
Full textDonateo, Teresa, Ludovico Cucciniello, Luciano Strafella, and Antonio Ficarella. "Control Oriented Modelling of a Turboshaft Engine for Hybrid Electric Urban Air-Mobility." E3S Web of Conferences 197 (2020): 05003. http://dx.doi.org/10.1051/e3sconf/202019705003.
Full textCatana, Razvan Marius, and Gabriel Dediu. "Analytical Calculation Model of the TV3-117 Turboshaft Working Regimes Based on Experimental Data." Applied Sciences 13, no. 19 (2023): 10720. http://dx.doi.org/10.3390/app131910720.
Full textHe, Dongjing, Rui Zhang, Cheng Wen, and Jianliang Teng. "Performance Simulation of Thermodynamic Design for a New Turboshaft Engine." Journal of Physics: Conference Series 2658, no. 1 (2023): 012048. http://dx.doi.org/10.1088/1742-6596/2658/1/012048.
Full textMagnani, Mattia, Giacomo Silvagni, Vittorio Ravaglioli, and Fabrizio Ponti. "0-D Dynamic Performance Simulation of Hydrogen-Fueled Turboshaft Engine." Aerospace 11, no. 10 (2024): 816. http://dx.doi.org/10.3390/aerospace11100816.
Full textVladov, Serhii, Lukasz Scislo, Valerii Sokurenko, et al. "Neural Network Signal Integration from Thermogas-Dynamic Parameter Sensors for Helicopters Turboshaft Engines at Flight Operation Conditions." Sensors 24, no. 13 (2024): 4246. http://dx.doi.org/10.3390/s24134246.
Full textShang, Yiman. "The Latest Development of Turboshaft Engines." Highlights in Science, Engineering and Technology 71 (November 28, 2023): 268–75. http://dx.doi.org/10.54097/hset.v71i.12709.
Full textPu, Chenghan, and Wenxiang Zhou. "Aero-engine Model Correction Technology Based on Adaptive Neural Network." Journal of Physics: Conference Series 2187, no. 1 (2022): 012064. http://dx.doi.org/10.1088/1742-6596/2187/1/012064.
Full textPetro, Kachanov, Lytviak Oleksandr, Derevyanko Oleksandr, and Komar Sergii. "DEVELOPMENT OF AN AUTOMATED HYDRAULIC BRAKE CONTROL SYSTEM FOR TESTING AIRCRAFT TURBOSHAFT GAS TURBINE ENGINES." Eastern-European Journal of Enterprise Technologies 6, no. 2 (102) (2019): 52–57. https://doi.org/10.15587/1729-4061.2019.185539.
Full textZhang, Xinglong, Lingwei Li, and Tianhong Zhang. "Research on Real-Time Model of Turboshaft Engine with Surge Process." Applied Sciences 12, no. 2 (2022): 744. http://dx.doi.org/10.3390/app12020744.
Full textVladov, Serhii, Oleksii Lytvynov, Victoria Vysotska, Viktor Vasylenko, Petro Pukach, and Myroslava Vovk. "An Innovative Applied Control System of Helicopter Turboshaft Engines Based on Neuro-Fuzzy Networks." Applied System Innovation 7, no. 6 (2024): 118. https://doi.org/10.3390/asi7060118.
Full textScott, Robert. "Historical Trends in Turboshaft Engine Procurement Cost." Journal of the American Helicopter Society 62, no. 3 (2017): 1–9. http://dx.doi.org/10.4050/jahs.62.032011.
Full textGuedel, A., and A. Farrando. "Experimental study of turboshaft engine core noise." Journal of Aircraft 23, no. 10 (1986): 763–67. http://dx.doi.org/10.2514/3.45378.
Full textChullai, E. T., Bodduluri Prasanna Sai, Dappili Sasindra Reddy, Kosaraju Pavan Kumar, and Yetukuri Manikanta. "Analysis of turboshaft engine-low power margin." International Journal of Advanced Intelligence Paradigms 29, no. 2/3 (2024): 248–62. http://dx.doi.org/10.1504/ijaip.2024.10067796.
Full textReddy, Dappili Sasindra, Kosaraju Pavan Kumar, Yetukuri Manikanta, Bodduluri Prasanna Sai, and E. T. Chullai. "Analysis of turboshaft engine-low power margin." International Journal of Advanced Intelligence Paradigms 29, no. 2/3 (2024): 248–62. http://dx.doi.org/10.1504/ijaip.2024.142671.
Full textZaitseva, Alina A., Matvey V. Belyavtsev, Evgeny A. Zaitsev, Dmitriy K. Kilmakov, Ivan P. Silin, and Vladislav F. Gavrilov. "SYNTHESIS OF AN INTEGRATED CONTROL SYSTEM FOR A HELICOPTER MULTI-ENGINE POWER PLANT ACCORDING TO A COMPLEX OF INTRA-ENGINE PARAMETERS." Electrical and data processing facilities and systems 20, no. 1 (2024): 97–105. http://dx.doi.org/10.17122/1999-5458-2024-20-1-97-105.
Full textVladov, Serhii, Viacheslav Kovtun, Valerii Sokurenko, Oleksandr Muzychuk, and Victoria Vysotska. "Helicopter Turboshaft Engine Residual Life Determination by Neural Network Method." Electronics 13, no. 15 (2024): 2952. http://dx.doi.org/10.3390/electronics13152952.
Full textFérand, Mélissa, Thomas Livebardon, Stéphane Moreau, and Marlène Sanjosé. "Numerical Prediction of Far-Field Combustion Noise from Aeronautical Engines." Acoustics 1, no. 1 (2019): 174–98. http://dx.doi.org/10.3390/acoustics1010012.
Full textVogt, R. L. "Future Trends in Turboshaft Engines up to the 5000 Horsepower Class." Journal of Engineering for Gas Turbines and Power 114, no. 4 (1992): 797–801. http://dx.doi.org/10.1115/1.2906659.
Full textJarvis, M. S., W. J. Ostergren, and B. Smith. "The Applicability of Electrically Driven Accessories for Turboshaft Engines." Journal of Engineering for Gas Turbines and Power 117, no. 2 (1995): 221–26. http://dx.doi.org/10.1115/1.2814084.
Full textCatana, R. M., G. Cican, and G. Dediu. "Gas Turbine Engine Starting Applicated on TV2-117 Turboshaft." Engineering, Technology & Applied Science Research 7, no. 5 (2017): 2005–9. http://dx.doi.org/10.48084/etasr.1315.
Full textR., M. Catana, G. Cican, and G. Dediu. "Gas Turbine Engine Starting Applicated on TV2-117 Turboshaft." Engineering, Technology & Applied Science Research 7, no. 5 (2017): 2005–9. https://doi.org/10.5281/zenodo.1037212.
Full textBoyko, Ludmila, Vadym Datsenko, Aleksandr Dyomin, and Nataliya Pizhankova. "Devising a method for calculating the turboshaft gas turbine engine performance involving a blade-by-blade description of the multi-stage compressor in a two-dimensional setting." Eastern-European Journal of Enterprise Technologies 4, no. 8(112) (2021): 59–66. http://dx.doi.org/10.15587/1729-4061.2021.238538.
Full textJohnson, E. T., and H. Lindsay. "Advanced Technology Programs for Small Turboshaft Engines: Past, Present, Future." Journal of Engineering for Gas Turbines and Power 113, no. 1 (1991): 33–39. http://dx.doi.org/10.1115/1.2906528.
Full textKoruyucu, Elif, Onder Altuntas, and T. Hikmet Karakoc. "Exergetic Investigation of a Turboshaft Helicopter Engine Related to Engine Power." SAE International Journal of Aerospace 13, no. 2 (2020): 257–67. http://dx.doi.org/10.4271/01-13-02-0019.
Full textChen, Yifeng, Yingqing Guo, Xinghui Yan, and Haotian Mao. "Multiple Delay-Dependent Guaranteed Cost Control for Distributed Engine Control Systems with Aging and Deterioration." Aerospace 9, no. 2 (2022): 88. http://dx.doi.org/10.3390/aerospace9020088.
Full textGu, Nannan, Xi Wang, and Meiyin Zhu. "Multi-Parameter Quadratic Programming Explicit Model Predictive Based Real Time Turboshaft Engine Control." Energies 14, no. 17 (2021): 5539. http://dx.doi.org/10.3390/en14175539.
Full textSalehi, Amin, and Morteza Montazeri-Gh. "Hardware-in-the-loop simulation of fuel control actuator of a turboshaft gas turbine engine." Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 233, no. 3 (2018): 969–77. http://dx.doi.org/10.1177/1475090218803727.
Full textKang, Young Seok, Yong Min Jun, and Jae Hwan Kim. "Main Components Design of a Small Turboshaft Engine." KSFM Journal of Fluid Machinery 21, no. 2 (2018): 19–26. http://dx.doi.org/10.5293/kfma.2018.21.2.019.
Full textOmar, H. H., V. S. Kuz'michev, A. O. Zagrebelnyi, and V. A. Grigoriev. "The effect of heat recovery on the optimal values of helicopter turboshaft engine parameters." VESTNIK of Samara University. Aerospace and Mechanical Engineering 19, no. 4 (2020): 43–57. http://dx.doi.org/10.18287/2541-7533-2020-19-4-43-57.
Full textYan, Siqi, Yun Zhang, Benwei Li, and Chenguang Liu. "Surge margin monitoring of one turboshaft engine with inlet distortion." Journal of Physics: Conference Series 2472, no. 1 (2023): 012053. http://dx.doi.org/10.1088/1742-6596/2472/1/012053.
Full textGounet, Helene, and Serge Lewy. "Three-Dimensional Sound Directivity around a Helicopter Turboshaft Engine." Journal of the American Helicopter Society 57, no. 4 (2012): 1–10. http://dx.doi.org/10.4050/jahs.57.042002.
Full textWang, Qingping, Wenchao Zhang, Xin Yuan, Yixuan Wang, Zhongliang Shen, and Fei Wang. "Research on the Impact of the Sand and Dust Ingestion Test on the Overall Performance of Turboshaft Engines." Aerospace 12, no. 2 (2025): 146. https://doi.org/10.3390/aerospace12020146.
Full textLudmila, Boyko, Datsenko Vadym, Dyomin Aleksandr, and Pizhankova Nataliya. "Devising a method for calculating the turboshaft gas turbine engine performance involving a blade-by-blade description of the multi-stage compressor in a two-dimensional setting." Eastern-European Journal of Enterprise Technologies 4, no. 8 (112) (2021): 59–66. https://doi.org/10.15587/1729-4061.2021.238538.
Full text