Academic literature on the topic 'Turbulence modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbulence modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turbulence modeling"
Souza, José Francisco Almeida de, José Luiz Lima de Azevedo, Leopoldo Rota de Oliveira, Ivan Dias Soares, and Maurício Magalhães Mata. "TURBULENCE MODELING IN GEOPHYSICAL FLOWS – PART I – FIRST-ORDER TURBULENT CLOSURE MODELING." Revista Brasileira de Geofísica 32, no. 1 (March 1, 2014): 31. http://dx.doi.org/10.22564/rbgf.v32i1.395.
Full textCalbet, Xavier, Niobe Peinado-Galan, Sergio DeSouza-Machado, Emil Robert Kursinski, Pedro Oria, Dale Ward, Angel Otarola, Pilar Rípodas, and Rigel Kivi. "Can turbulence within the field of view cause significant biases in radiative transfer modeling at the 183 GHz band?" Atmospheric Measurement Techniques 11, no. 12 (November 30, 2018): 6409–17. http://dx.doi.org/10.5194/amt-11-6409-2018.
Full textStamenkovic, Zivojin, Milos Kocic, and Jelena Petrovic. "The CFD modeling of two-dimensional turbulent MHD channel flow." Thermal Science 21, suppl. 3 (2017): 837–50. http://dx.doi.org/10.2298/tsci160822093s.
Full textBanks, J., and N. W. Bressloff. "Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations." Journal of Biomechanical Engineering 129, no. 1 (July 28, 2006): 40–50. http://dx.doi.org/10.1115/1.2401182.
Full textDrygala, C., B. Winhart, F. di Mare, and H. Gottschalk. "Generative modeling of turbulence." Physics of Fluids 34, no. 3 (March 2022): 035114. http://dx.doi.org/10.1063/5.0082562.
Full textBrandenburg, Axel, and Åke Nordlund. "Astrophysical turbulence modeling." Reports on Progress in Physics 74, no. 4 (March 14, 2011): 046901. http://dx.doi.org/10.1088/0034-4885/74/4/046901.
Full textFan, Wenyuan, and Henryk Anglart. "Progress in Phenomenological Modeling of Turbulence Damping around a Two-Phase Interface." Fluids 4, no. 3 (July 18, 2019): 136. http://dx.doi.org/10.3390/fluids4030136.
Full textKarpov, Platon I., Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley, and Ghanshyam Pilania. "Physics-informed Machine Learning for Modeling Turbulence in Supernovae." Astrophysical Journal 940, no. 1 (November 1, 2022): 26. http://dx.doi.org/10.3847/1538-4357/ac88cc.
Full textAllouche, Mohammad, Elie Bou-Zeid, Cedrick Ansorge, Gabriel G. Katul, Marcelo Chamecki, Otavio Acevedo, Sham Thanekar, and Jose D. Fuentes. "The Detection, Genesis, and Modeling of Turbulence Intermittency in the Stable Atmospheric Surface Layer." Journal of the Atmospheric Sciences 79, no. 4 (April 2022): 1171–90. http://dx.doi.org/10.1175/jas-d-21-0053.1.
Full textLiu, Zhenchen, Peiqing Liu, Hao Guo, and Tianxiang Hu. "Experimental investigations of turbulent decaying behaviors in the core-flow region of a propeller wake." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, no. 2 (August 1, 2019): 319–29. http://dx.doi.org/10.1177/0954410019865702.
Full textDissertations / Theses on the topic "Turbulence modeling"
Widlund, Ola. "Modeling of magnetohydrodynamic turbulence." Doctoral thesis, Stockholm, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3065.
Full textTera, Sridhar R. "Turbulence modeling of solar convection." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1446423.
Full textPASINATO, HUGO DARIO. "TURBULENCE IN WALL REGION MODELING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19290@1.
Full textNeste trabalho são apresentados de uma pesquisa orientada à modelagem da turbulência de baixos números de Reynolds. Com esse objetivo foi caracterizado o escoamento turbulento de baixos números de Reynolds na região viscosa vizinha a uma parede, na base de dados experimentais e correlação empírica. Sobre essa caracterização foi feita uma análise dos valores médios de interesse para modelos de turbulência de duas equações, a qual permitiu obter conclusões sobre o comportamento da turbulência de baixos Reynolds e propor modelos para a mesma. Essa modelagem implica em fornecer um fechamento para a equação de dissipação de energia cinética turbulenta e uma expressão para a viscosidade efetiva da turbulência, na região viscosa. O fechamento da equação de dissipação foi feito analisando os termos fontes de vorticidade, usando resultados prévios da ordem de grandeza relativa dos mesmos. A equação de dissipação obtida desse modo não contém funções de amortecimento. Com relação à expressão proposta para calcular a viscosidade efetiva de turbulência, considera-se que a transferência de quantidade de movimento devido à turbulência pode ser obtida em função da energia cinética do escoamento médio. Considera-se que a modelagem proposta é uma complementação para modelos de turbulência de duas equações, para simular zonas de baixos Reynolds incluídos os casos em sub-camada logarítmica aparente. Problemas de escoamentos turbulentos com cisalhamento médio com diferentes características, usualmente utilizadas para avaliar modelos de turbulência, foram usados como testes. Como resultados relevantes desta pesquisa, considera-se o fato de se usar em forma sistemática informação experimental para o desenvolvimento de modelos de turbulência, a obtenção de um fechamento para a equação de dissipação sem funções de amortecimento e uma expressão para a viscosidade da turbulência na região viscosa. No caso da viscosidade da turbulência, a expressão proposta permite obter a distribuição da velocidade média na região amortecedora, apresentando boa concordância com dados experimentais.
This thesis presents the results of research work aiming at low Reynolds turbulence modeling. For an stablished boundary layer turbulent low Reynolds flow in the viscous layer near a wall was characterized based on experimental data and empirical polynomials. On this basis an analysis of the distribuition of the mean values in the near-wall region was performed allowing for the proposal of a low Reynolds turbulence model within a two-equation model methodolgy. The low Reynolds proposal involves a closure to the dissipation equation and the proposal of an effective turbulence viscosity expression. The dissipation equation closure like as the effective viscosity proposal were made based on previous results of scale time rate analysis through the viscous region. On the other hand, the effective turbulence viscosity expression allows for the representation of the Reynolds stress as a function of mean flow kinetic energy. The low Reynolds turbulence modeling proposal can be seen as a complementation of two eqaution models for low Reynolds turbulence. The model was tested in several case tests of turbulent flow with different kind of mean shear, frequently used for turbulence model assessment. As main results of this work can be mentioned the systematic use of experimental data to build, analyze and test turbulence models; the closure of the dissipation equation without damping functions and the turbulence effective viscosity expression for the viscous region. This last proposed relation allows for the attainment of a mean velocity distribuition profile in the buffer region, which adequately fits experimental data.
Ajmani, Kumud. "Turbulence modeling in hypersonic inlets." Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/101365.
Full textM.S.
Bakosi, József. "PDF modeling of turbulent flows on unstructured grids." Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3083.
Full textVita: p. 178. Thesis director: Zafer Boybeyi. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computational Sciences and Informatics. Title from PDF t.p. (viewed June 30, 2008). Includes bibliographical references (p. 168-177). Also issued in print.
Cotela, Dalmau Jordi. "Applications of turbulence modeling in civil engineering." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/383754.
Full textAquesta tesi estudia la possibilitat d'utilitzar formulacions estabilitzades d'elements finits de les equacions de Navier-Stokes incompressibles per a la simulació de problemes de flux turbulent. La descripció de la turbulència és un repte, ja que es tracta d'un problema altament dinàmic i complex i la seva simulació numèrica es veu complicada pel fet que hi intervenen moviments de masses fluides amb dimensions i temps característics molt diferents i per tant requereix malles de càlcul molt fines i temps de simulació llargs. Això s'ha provat de resoldre mitjançant l'ús de models de turbulència, mantenint únicament la part de la solució de més gran escala i introduint un model de l'efecte dels moviments de petita escala, que acostuma a tenir un efecte dissipatiu. En el context de la simulació de fluids amb elements finits es planteja un segon problema amb l'aparició d'inestabilitats numèriques. Aquestes es poden evitar amb l'ús de formulacions estabilitzades, en les quals el problema es modifica per assegurar que tingui una solució estable. Ja que els mètodes d'estabilització típicament introdueixen dissipació addicional, la relació entre la dissipació numèrica i la dissipació física té un paper fonamental en la qualitat de la solució. Per investigar aquest fenomen hem estudiat el comportament de diferents formulacions d'elements finits basades en mètodes variacionals de subescala (VMS) i en el càlcul finit (FIC) en termes del seu comportament en la simulació de problemes turbulents de referència, amb l'objectiu final de trobar un mètode que a la vegada garanteixi l'estabilitat de la solució i introdueixi la dissipació turbulenta físicament necessària. Tenint en compte que, fins i tot quan s'utilitzen models de turbulència, la simulació de problemes de flux turbulent requereix molts recursos de càlcul, també hem estudiat aspectes de la implementació paral·lela de programes d'elements finits per tal de garantir que el nostre codi pot treure partit d'arquitectures de memòria distribuïda i servidors de càlcul d'alt rendiment. Finalment, hem desenvolupat una tècnica de refinament adaptatiu de malla que permeti millorar la qualitat de malles de càlcul tetraèdriques, novament amb la intenció de facilitar la simulació de grans problemes de flux turbulent. Aquesta tècnica combina un estimador d'error basat en els principis de la formulació variacional de subescala amb un procediment de refinament dissenyat per funcionar fàcilment en un context de memòria distribuïda i s'ha utilitzat per simular problemes de flux turbulent i no-Newtonià.
Jeong, Eun-Hwan. "Selected problems in turbulence theory and modeling." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/523.
Full textFan, Chen. "ENHANCING FLUID MODELING WITH TURBULENCE AND ACCELERATION." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1426072265.
Full textHickel, Stefan. "Implicit turbulence modeling for large-eddy simulation." kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/654921/654921.pdf.
Full textUddin, Naseem. "Turbulence modeling of complex flows in CFD." München Verl. Dr. Hut, 2008. http://d-nb.info/990811263/04.
Full textBooks on the topic "Turbulence modeling"
Center, Ames Research, ed. Turbulence modeling. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1995.
Find full textWilcox, David C. Turbulence modeling for CFD. La Cãnada, CA: DCW Industries, Inc., 1993.
Find full textWilcox, David C. Turbulence modeling for CFD. 2nd ed. La Cãnada, Calif: DCW Industries, 1998.
Find full textChen, Ching Jen. Fundamentals of turbulence modeling. Washington, DC: Taylor & Francis, 1998.
Find full textWilcox, David C. Turbulence modeling for CFD. La Cañada, CA: DCW Industries, 1994.
Find full textG, Biswas, and Eswaran V, eds. Turbulent flows: Fundamentals, experiments and modeling. Pangbourne: Alpha Science, 2002.
Find full textMarvin, Joseph G. Turbulence modeling for hypersonic flows. [Moffett Field, Calif.]: NASA Ames Research Center, 1989.
Find full textBoratav, Oluş, Alp Eden, and Ayse Erzan, eds. Turbulence Modeling and Vortex Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0105025.
Full textN, Mansour N., and United States. National Aeronautics and Space Administration., eds. Modeling of near-wall turbulence. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textUnited States. National Aeronautics and Space Administration., ed. Workshop on Computational Turbulence Modeling. [Washington, DC]: NASA, 1993.
Find full textBook chapters on the topic "Turbulence modeling"
Aldama, Alvaro A. "Turbulence Modeling." In Filtering Techniques for Turbulent Flow Simulation, 7–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84091-3_2.
Full textMoukalled, F., L. Mangani, and M. Darwish. "Turbulence Modeling." In The Finite Volume Method in Computational Fluid Dynamics, 693–744. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16874-6_17.
Full textYoshizawa, Akira. "Conventional Turbulence Modeling." In Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 83–144. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_4.
Full textYoshizawa, Akira. "Compressible Turbulence Modeling." In Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 265–303. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_8.
Full textYoshizawa, Akira. "Magnetohydrodynamic Turbulence Modeling." In Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 305–69. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_9.
Full textRodriguez, Sal. "RANS Turbulence Modeling." In Applied Computational Fluid Dynamics and Turbulence Modeling, 121–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28691-0_4.
Full textMorel, Christophe. "Turbulence Models." In Mathematical Modeling of Disperse Two-Phase Flows, 251–77. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20104-7_11.
Full textChassaing, P., R. A. Antonia, F. Anselmet, L. Joly, and S. Sarkar. "First-Order Modeling." In Variable Density Fluid Turbulence, 261–310. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0075-7_10.
Full textChassaing, P., R. A. Antonia, F. Anselmet, L. Joly, and S. Sarkar. "Second-Order Modeling." In Variable Density Fluid Turbulence, 311–44. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0075-7_11.
Full textSpeziale, Charles G. "Turbulence modeling: Present and future Comment 2." In Whither Turbulence? Turbulence at the Crossroads, 490–512. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52535-1_64.
Full textConference papers on the topic "Turbulence modeling"
Coder, James, Philip Cross, and Marilyn Smith. "Turbulence Modeling Strategies for Rotor Hub Flows." In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-11994.
Full textJi, Honglei, and Renliang Chen. "Helicopter Turbulence Modeling with Accurate Spatial Correlations for Handling- Quality Analysis." In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–16. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12116.
Full textBardina, J., P. Huang, T. Coakley, J. Bardina, P. Huang, and T. Coakley. "Turbulence modeling validation." In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2121.
Full textWilcox, David. "Turbulence modeling - An overview." In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-724.
Full textXiao, Xudong, D. McRae, Hassan Hassan, Frank Ruggiero, and George Jumper. "Modeling Atmospheric Optical Turbulence." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-77.
Full textMazher, A. K., and Changki Mo. "Dynamic Modeling of Turbulence." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62330.
Full textFedorova, A. "Wave motions and turbulence in wavelet framework." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386876.
Full textPoggie, Jonathan. "Compressible Turbulent Boundary Layer Simulations: Resolution Effects and Turbulence Modeling." In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1983.
Full textMorelli, Eugene, and Kevin Cunningham. "Aircraft Dynamic Modeling in Turbulence." In AIAA Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-4650.
Full textRUBESIN, MORRIS. "Turbulence modeling for aerodynamic flows." In 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-606.
Full textReports on the topic "Turbulence modeling"
Laganelli, A. L., and S. M. Dash. Turbulence Modeling. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada415956.
Full textLing, Julia, and Jeremy Templeton. Machine Learning for Turbulence Modeling. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1761814.
Full textPerot, Blair. Turbulence Modeling Using Body Force Potentials. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada415903.
Full textWalker, Dave. Turbulence Modeling for Free-Surface Flows. Fort Belvoir, VA: Defense Technical Information Center, November 1997. http://dx.doi.org/10.21236/ada338778.
Full textLeith, C., and L. Margolin. Turbulence modeling in the SHALE code. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/6916524.
Full textNovikov, Evgency. Structure and Modeling of Free-Surface Turbulence. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada370533.
Full textNovikov, Evgeny. Structure of Turbulence and Subgrid-Scale Modeling. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada325561.
Full textSarkar, Sutanu. Turbulence Modeling in Stratified Flows over Topography. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573212.
Full textYue, Dick K., and Kelli Hendrickson. Multiphase Turbulence Modeling for Computational Ship Hydrodynamics. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada602323.
Full textPope, S. B. Modeling Mixing and Reaction in Turbulence Combustion. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada378397.
Full text