Academic literature on the topic 'Turbulent Scaling Laws'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbulent Scaling Laws.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Turbulent Scaling Laws"

1

Fauve, Stéphan, and François Pétrélis. "Scaling laws of turbulent dynamos." Comptes Rendus Physique 8, no. 1 (2007): 87–92. http://dx.doi.org/10.1016/j.crhy.2006.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pinel, J., and S. Lovejoy. "Atmospheric waves as scaling, turbulent phenomena." Atmospheric Chemistry and Physics Discussions 13, no. 6 (2013): 14797–822. http://dx.doi.org/10.5194/acpd-13-14797-2013.

Full text
Abstract:
Abstract. It is paradoxical that while atmospheric dynamics are highly nonlinear and turbulent that atmospheric waves are commonly modelled by linear or weakly nonlinear theories. We postulate that the laws governing atmospheric waves are on the contrary high Reynold's number (Re), emergent laws so that – in common with the emergent high Re turbulent laws – they are also constrained by scaling symmetries. We propose an effective turbulence – wave propagator which corresponds to a fractional and anisotropic extension of the classical wave equation propagator with dispersion relations similar to
APA, Harvard, Vancouver, ISO, and other styles
3

Pinel, J., and S. Lovejoy. "Atmospheric waves as scaling, turbulent phenomena." Atmospheric Chemistry and Physics 14, no. 7 (2014): 3195–210. http://dx.doi.org/10.5194/acp-14-3195-2014.

Full text
Abstract:
Abstract. It is paradoxical that, while atmospheric dynamics are highly nonlinear and turbulent, atmospheric waves are commonly modelled by linear or weakly nonlinear theories. We postulate that the laws governing atmospheric waves are in fact high-Reynolds-number (Re), emergent laws so that – in common with the emergent high-Re turbulent laws – they are also constrained by scaling symmetries. We propose an effective turbulence–wave propagator which corresponds to a fractional and anisotropic extension of the classical wave equation propagator, with dispersion relations similar to those of ine
APA, Harvard, Vancouver, ISO, and other styles
4

Avsarkisov, Victor. "On the Buoyancy Subrange in Stratified Turbulence." Atmosphere 11, no. 6 (2020): 659. http://dx.doi.org/10.3390/atmos11060659.

Full text
Abstract:
This study is motivated by the importance of the stratified turbulence in geophysical flows. We present a theoretical analysis of the buoyancy subrange based on the theory of strongly stratified turbulence. Some important turbulent scales and their relations are explored. Scaling constants of the buoyancy subrange scaling laws for both kinetic and potential energy spectra are derived and analyzed. It is found that these constants are functions of the horizontal Froude number F r h . For the potential energy spectrum, the scaling constant also depends on the turbulent flux coefficient of Γ .
APA, Harvard, Vancouver, ISO, and other styles
5

Arpaci, Vedat S., and Apoorva Agarwal. "Scaling laws of turbulent ceiling fires." Combustion and Flame 116, no. 1-2 (1999): 84–93. http://dx.doi.org/10.1016/s0010-2180(98)00037-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dairay, T., M. Obligado, and J. C. Vassilicos. "Non-equilibrium scaling laws in axisymmetric turbulent wakes." Journal of Fluid Mechanics 781 (September 16, 2015): 166–95. http://dx.doi.org/10.1017/jfm.2015.493.

Full text
Abstract:
We present a combined direct numerical simulation and hot-wire anemometry study of an axisymmetric turbulent wake. The data lead to a revised theory of axisymmetric turbulent wakes which relies on the mean streamwise momentum and turbulent kinetic energy equations, self-similarity of the mean flow, turbulent kinetic energy, Reynolds shear stress and turbulent dissipation profiles, non-equilibrium dissipation scalings and an assumption of constant anisotropy. This theory is supported by the present data up to a distance of 100 times the wake generator’s size, which is as far as these data exten
APA, Harvard, Vancouver, ISO, and other styles
7

Wei, Xing. "Estimations and Scaling Laws for Stellar Magnetic Fields." Astrophysical Journal 926, no. 1 (2022): 40. http://dx.doi.org/10.3847/1538-4357/ac4755.

Full text
Abstract:
Abstract In rapidly rotating turbulence (i.e., a Rossby number much less than unity), the standard mixing length theory for turbulent convection breaks down. However, the Coriolis force enters the force balance such that the magnetic field eventually depends on rotation. By simplifying the self-sustained magnetohydrodynamics dynamo equations of electrically conducting fluid motion, with the aid of the theory of isotropic nonrotating or anisotropic rotating turbulence driven by thermal convection, we make estimations and derive scaling laws for stellar magnetic fields with slow and fast rotatio
APA, Harvard, Vancouver, ISO, and other styles
8

Ali, Sk Zeeshan, and Subhasish Dey. "Origin of the scaling laws of sediment transport." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2197 (2017): 20160785. http://dx.doi.org/10.1098/rspa.2016.0785.

Full text
Abstract:
In this paper, we discover the origin of the scaling laws of sediment transport under turbulent flow over a sediment bed, for the first time, from the perspective of the phenomenological theory of turbulence. The results reveal that for the incipient motion of sediment particles, the densimetric Froude number obeys the ‘(1 + σ )/4’ scaling law with the relative roughness (ratio of particle diameter to approach flow depth), where σ is the spectral exponent of turbulent energy spectrum. However, for the bedforms, the densimetric Froude number obeys a ‘(1 + σ )/6’ scaling law with the relative ro
APA, Harvard, Vancouver, ISO, and other styles
9

Carbone, V., and R. Bruno. "Cancellation exponents and multifractal scaling laws in the solar wind magnetohydrodynamic turbulence." Annales Geophysicae 14, no. 8 (1996): 777–85. http://dx.doi.org/10.1007/s00585-996-0777-0.

Full text
Abstract:
Abstract. Some signed measures in turbulence are found to be sign-singular, that is their sign reverses continuously on arbitrary finer scales with a reduction of the cancellation between positive and negative contributions. The strength of the singularity is characterized by a scaling exponent κ, the cancellation exponent. In the present study by using some turbulent samples of the velocity field obtained from spacecraft measurements in the interplanetary medium, we show that sign-singularity is present everywhere in low-frequency turbulent samples. The cancellation exponent can be related to
APA, Harvard, Vancouver, ISO, and other styles
10

Ali, Sk Zeeshan, and Subhasish Dey. "Origin of the scaling laws of developing turbulent boundary layers." Physics of Fluids 34, no. 7 (2022): 071402. http://dx.doi.org/10.1063/5.0096255.

Full text
Abstract:
In this Perspective article, we seek the origin of the scaling laws of developing turbulent boundary layers over a flat plate from the perspective of the phenomenological theory of turbulence. The scaling laws of the boundary-layer thickness and the boundary shear stress in rough and smooth boundary-layer flows are established. In a rough boundary-layer flow, the boundary-layer thickness (scaled with the boundary roughness) and the boundary shear stress (scaled with the dynamic pressure) obey the “2/(1− σ)” and “(1+ σ)/(1− σ)” scaling laws, respectively, with the streamwise distance (scaled wi
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Turbulent Scaling Laws"

1

Kishi, Tatsuro. "Scaling laws for turbulent relative dispersion in two-dimensional energy inverse-cascade turbulence." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Donzis, Diego Aaron. "Scaling of turbulence and turbulent mixing using Terascale numerical simulations." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19794.

Full text
Abstract:
Fundamental aspects of turbulence and turbulent mixing are investigated using direct numerical simulations (DNS) of stationary isotropic turbulence, with Taylor-scale Reynolds numbers ranging from 8 to 650 and Schmidt numbers from 1/8 to 1024. The primary emphasis is on important scaling issues that arise in the study of intermittency, mixing and turbulence under solid-body rotation. Simulations up to 2048^3 in size have been performed using large resource allocations on Terascale computers at leading supercomputing centers. Substantial efforts in algorithmic development have also been unde
APA, Harvard, Vancouver, ISO, and other styles
3

Gauding, Michael [Verfasser]. "Statistics and scaling laws of turbulent scalar mixing at high Reynolds numbers / Michael Gauding." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/105834966X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schäfer, Philip Morten [Verfasser]. "Statistics, Geometries and Scaling Laws of Streamlines and Streamline Segments in Turbulent Flows / Philip Morten Schäfer." Aachen : Shaker, 2013. http://d-nb.info/105157398X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Joseph, Liselle AnnMarie. "Pressure Fluctuations in a High-Reynolds-Number Turbulent Boundary Layer over Rough Surfaces of Different Configurations." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/79630.

Full text
Abstract:
The pressure fluctuations under a high Reynolds Number, rough-wall, turbulent, boundary layer have been studied in the Virginia Tech Stability Wind Tunnel. Rough surfaces of varying element height (1-mm, 3-mm), shape (hemispheres, cylinders) and spacing (5.5-mm, 10.4-mm, 16.5-mm) were investigated in order to ascertain how the turbulent pressure fluctuations change with changes in roughness geometry. Rough surfaces which contain two types of elements are investigated and relationships between the combination surface and the individual surfaces have been uncovered. Measurements of the wall pres
APA, Harvard, Vancouver, ISO, and other styles
6

Stella, Francesco. "Caractérisation d’un décollement turbulent sur une rampe : entraînement et lois d’échelle." Thesis, Orléans, 2017. http://www.theses.fr/2017ORLE2043/document.

Full text
Abstract:
Les décollements turbulents massifs sont des phénomènes communs qui peuvent causer des pertes et de nuisances aérodynamiques importantes dans les écoulements industriels, par exemple à l’arrière d’une aile d’avion. Ce travail contribue à leur compréhension par l’analyse phénoménologique d’un décollement turbulent, représentatif d’un grand nombre d’écoulements réels. Le premier objectif est d’identifier les lois d’échelle des décollements turbulents, notamment en rapport avec les caractéristiques de l’écoulement à l’amont de la rampe. Un deuxième objectif est l’analyse, à grande et à petite éch
APA, Harvard, Vancouver, ISO, and other styles
7

Marino, Raffaele. "Scaling laws in solar wind turbulence." Nice, 2009. http://www.theses.fr/2009NICE4104.

Full text
Abstract:
Dans ma thèse de doctorat, je dérive la loi de Yaglom pour la magnétohydrodynamique, une relation de proportionnalité entre le moment mixte d’ordre 3 des incréments longitudinaux des variables d’Elsässer et l’échelle de ces incréments. En utilisant des mesures de la sonde spatiale Ulysses, j’ai montré pour la première fois la validité de cette relation, démontrant ainsi l’existence d’une cascade turbulente d’énergie et la nature turbulente des fluctuations de vitesse et champ magnétique dans les plasmas magnétisés. La relation de Yaglom pour la MHD permet aussi la première estimation directe d
APA, Harvard, Vancouver, ISO, and other styles
8

Marchand, Muriel. "Propriétés statistiques des petites structures dans les écoulements turbulents : influence du nombre de Reynolds sur l'intermittence." Grenoble INPG, 1994. http://www.theses.fr/1994INPG0138.

Full text
Abstract:
Une etude experimentale du champ de vitesse et de temperature (consideree comme un scalaire passif) a ete realisee dans divers ecoulements pleinement turbulents (jet, turbulence de grille, soufflerie s1 de l'onera), pour une large gamme de nombres de reynolds. En ce qui concerne la vitesse, des outils statistiques tels que la representation spectrale de l'energie, les densites de probabilite globales et conditionnelles, ou les moments des fonctions de structure, ont permis de mettre en evidence le role determinant du taux de transfert d'energie dans l'intermittence en turbulence tridimensionne
APA, Harvard, Vancouver, ISO, and other styles
9

Bouaniche, Alexandre. "A hybrid stochastic-sectional method for the simulation of soot particle size distributions Vitiated high karlovitz n-decane/air turbulent flames: scaling laws and micro-mixing modeling analysis A hybrid stochastic/fixed-sectional method for solving the population balance equation." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR23.

Full text
Abstract:
Les particules de suie (qui sont un type de particules ultrafines) peuvent être produites et émises dans des conditions de combustion riche. Les secteurs comme les transports (routier et aérien), où l'industrie sont des contributeurs significatifs aux émissions de particules. Celles-ci sont habituellement considérées comme des polluants dans la mesure où leur impact négatif sur la santé a été mesuré. Dans certains cas spécifiques comme la production de nanomatériaux, elles peuvent être synthétisées de manière volontaire. Dans les deux cas, une compréhension précise et une capabilité de prédict
APA, Harvard, Vancouver, ISO, and other styles
10

Seis, Christian. "Scaling laws in two models for thermodynamically driven fluid flows." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-81228.

Full text
Abstract:
In this thesis, we consider two models from physics, which are characterized by the interplay of thermodynamical and fluid mechanical phenomena: demixing (spinodal decomposition) and Rayleigh--Bénard convection. In both models, we investigate the dependencies of certain intrinsic quantities on the system parameters. The first model describes a thermodynamically driven demixing process of a binary viscous fluid. During the evolution, the two components of the mixture separate into two domains of the different equilibrium volume fractions. One observes a clear tendency: Larger domains grow at t
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Turbulent Scaling Laws"

1

Speziale, Charles G. Scaling laws for homogeneous turbulent shear flows in a rotating frame. ICASE, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scaling laws for homogeneous turbulent shear flows in a rotating frame. National Aeronautics and Space Administration, Langley Research Center, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turbulence And Diffusion Scaling Versus Equations. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Howell, James Frederick. The influence of small scale variability on scaling relationships describing atmospheric turbulence. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zeitlin, Vladimir. Wave Turbulence. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0013.

Full text
Abstract:
Main notions and ideas of wave (weak) turbulence theory are explained with the help of Hamiltonian approach to wave dynamics, and are applied to waves in RSW model. Derivation of kinetic equations under random-phase approximation is explained. Short inertia–gravity waves on the f plane, short equatorial inertia–gravity waves, and Rossby waves on the beta plane are then considered along these lines. In all of these cases, approximate solutions of kinetic equation, annihilating the collision integral, can be obtained by scaling arguments, giving power-law energy spectra. The predictions of turbu
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Turbulent Scaling Laws"

1

Marusic, Ivan, and Gary J. Kunkel. "Turbulence Intensity Similarity Laws For Turbulent Boundary Layers." In IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-0997-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oberlack, Martin, and Silke Guenther. "New Scaling Laws of Shear-Free Turbulent Diffusion and Diffusion-Waves." In IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-0997-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, C. T., and M. Oberlack. "Symmetry Theory and Turbulent Jet Scaling Laws of a Spatially Evolving Turbulent Round Jet." In Springer Proceedings in Physics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55924-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fitton, G., I. Tchiguirinskaia, D. Schertzer, and S. Lovejoy. "Multifractal Statistical Methods and Space-Time Scaling Laws for Turbulent Winds." In Research Topics in Wind Energy. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54696-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Plaza, F., J. F. Pinton, L. Danaila, F. Anselmet, and P. Le Gal. "Scaling Laws for a Passive Scalar in a Turbulent Swirling Flow." In Fluid Mechanics and Its Applications. Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5118-4_128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johansson, Arne V., Björn Lindgren, and Jens M. Österlund. "Experimental Tests of Mean Velocity Distribution Laws Derived by Lie Group Symmetry Methods in Turbulent Boundary Layers." In IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-0997-3_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oberlack, Martin, and George Khujadze. "Fractal-Generated Turbulent Scaling Laws from a New Scaling Group of the Multi-Point Correlation Equation." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02225-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oberlack, M., and G. Khujadze. "Fractal-generated turbulent scaling laws from a new scaling group of the multi-point correlation equation." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03085-7_164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barta, R., C. Bauer, D. Schiepel, and C. Wagner. "Corner Circulation Scaling Laws of Turbulent Rayleigh-Bénard Convection in a Cubic Cell." In Springer Proceedings in Physics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55924-2_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zimmerman, Spencer, Joseph Klewicki, and Martin Oberlack. "Experimental Assessment of Symmetry Induced Higher-Moment Scaling Laws in Turbulent Pipe Flow." In Springer Proceedings in Physics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80716-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Turbulent Scaling Laws"

1

Thai, Austin, and Jeremy Bain. "OVERFLOW/PSU-WOPWOP Predictions and NFAC Acoustics Measurements of the Joby Aviation Propeller in Hover and Edgewise Flight." In Vertical Flight Society 81st Annual Forum and Technology Display. The Vertical Flight Society, 2025. https://doi.org/10.4050/f-0081-2025-35.

Full text
Abstract:
An extensive test campaign was conducted at the National Full-Scale Aerodynamics Complex 40- by- 80-Foot wind tunnel to acquire performance, loads, and acoustics measurements of the Joby Aviation propeller across a variety of operating conditions. The dataset provided validation of the design methodology as well as verification of computational tools. The Vold-Kalman filter was used to extract the shaft-coherent propeller noise in hover to obtain the residual noise, representing the broadband noise. This data verified broadband noise tip speed scaling laws as well as a low-order empirical mode
APA, Harvard, Vancouver, ISO, and other styles
2

Arlitt, Raphael G. H., Martin Oberlack, and Norbert Peters. "COMPRESSIBLE TURBULENT FLOW: SYMMETRIES AND SCALING LAWS." In First Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.1750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garbet, X., and Sadruddin Benkadda. "Turbulence scaling laws and transport models." In TURBULENT TRANSPORT IN FUSION PLASMAS: First ITER International Summer School. AIP, 2008. http://dx.doi.org/10.1063/1.2939038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khujadze, George, and Martin Oberlack. "NEW SCALING LAWS IN ZPG TURBULENT BOUNDARY LAYER FLOW." In Fifth International Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 2007. http://dx.doi.org/10.1615/tsfp5.680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Avsarkisov, V. S., Martin Oberlack, and Sergio Hoyas. "NEW SCALING LAWS FOR TURBULENT POISEUILLE FLOW WITH WALL TRANSPIRATION." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.1500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rosteck, Andreas, and Martin Oberlack. "NEW TURBULENT SCALING LAWS FROM THE MULTI-POINT CORRELATION EQUATIONS." In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.1080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jacob, Boris, A. Olivieri, and Carlo M. Casciola. "SCALING LAWS FOR A TURBULENT BOUNDARY LAYER OVER A FLAT PLATE." In Second Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 2001. http://dx.doi.org/10.1615/tsfp2.1390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adrian, Ronald J., and Richard L. Fernandes. "SCALING LAWS OF TEMPERATURE AND VELOCITY FLUCTUATIONS IN TURBULENT THERMAL CONVECTION." In First Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

VAN VEEN, LENNAERT, SHIGEO KIDA, and GENTA KAWAHARA. "PERIODIC MOTION VERSUS TURBULENT MOTION: SCALING LAWS, BURSTING AND LYAPUNOV SPECTRA." In Proceedings of the COSNet/CSIRO Workshop on Turbulence and Coherent Structures in Fluids, Plasmas and Nonlinear Media. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812771025_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brzek, Brian, Luciano Castillo, Catherine Anderson, and Ozden Turan. "Scaling Laws and Measurements on Adverse Pressure Gradient Turbulent Boundary Layers." In 43rd AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-111.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Turbulent Scaling Laws"

1

Boldyrev, Stanislav. Scaling laws in magnetized plasma turbulence. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1187709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!