Journal articles on the topic 'Turbulent Scaling Laws'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Turbulent Scaling Laws.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fauve, Stéphan, and François Pétrélis. "Scaling laws of turbulent dynamos." Comptes Rendus Physique 8, no. 1 (2007): 87–92. http://dx.doi.org/10.1016/j.crhy.2006.12.011.
Full textPinel, J., and S. Lovejoy. "Atmospheric waves as scaling, turbulent phenomena." Atmospheric Chemistry and Physics Discussions 13, no. 6 (2013): 14797–822. http://dx.doi.org/10.5194/acpd-13-14797-2013.
Full textPinel, J., and S. Lovejoy. "Atmospheric waves as scaling, turbulent phenomena." Atmospheric Chemistry and Physics 14, no. 7 (2014): 3195–210. http://dx.doi.org/10.5194/acp-14-3195-2014.
Full textAvsarkisov, Victor. "On the Buoyancy Subrange in Stratified Turbulence." Atmosphere 11, no. 6 (2020): 659. http://dx.doi.org/10.3390/atmos11060659.
Full textArpaci, Vedat S., and Apoorva Agarwal. "Scaling laws of turbulent ceiling fires." Combustion and Flame 116, no. 1-2 (1999): 84–93. http://dx.doi.org/10.1016/s0010-2180(98)00037-6.
Full textDairay, T., M. Obligado, and J. C. Vassilicos. "Non-equilibrium scaling laws in axisymmetric turbulent wakes." Journal of Fluid Mechanics 781 (September 16, 2015): 166–95. http://dx.doi.org/10.1017/jfm.2015.493.
Full textWei, Xing. "Estimations and Scaling Laws for Stellar Magnetic Fields." Astrophysical Journal 926, no. 1 (2022): 40. http://dx.doi.org/10.3847/1538-4357/ac4755.
Full textAli, Sk Zeeshan, and Subhasish Dey. "Origin of the scaling laws of sediment transport." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2197 (2017): 20160785. http://dx.doi.org/10.1098/rspa.2016.0785.
Full textCarbone, V., and R. Bruno. "Cancellation exponents and multifractal scaling laws in the solar wind magnetohydrodynamic turbulence." Annales Geophysicae 14, no. 8 (1996): 777–85. http://dx.doi.org/10.1007/s00585-996-0777-0.
Full textAli, Sk Zeeshan, and Subhasish Dey. "Origin of the scaling laws of developing turbulent boundary layers." Physics of Fluids 34, no. 7 (2022): 071402. http://dx.doi.org/10.1063/5.0096255.
Full textCarbone, V., P. Veltri, and R. Bruno. "Solar wind low-frequency magnetohydrodynamic turbulence: extended self-similarity and scaling laws." Nonlinear Processes in Geophysics 3, no. 4 (1996): 247–61. http://dx.doi.org/10.5194/npg-3-247-1996.
Full textGallet, Basile, and Raffaele Ferrari. "The vortex gas scaling regime of baroclinic turbulence." Proceedings of the National Academy of Sciences 117, no. 9 (2020): 4491–97. http://dx.doi.org/10.1073/pnas.1916272117.
Full textSERIO, C., and V. TRAMUTOLI. "SCALING LAWS IN A TURBULENT BAROCLINIC INSTABILITY." Fractals 03, no. 02 (1995): 297–314. http://dx.doi.org/10.1142/s0218348x95000242.
Full textDey, Subhasish, and Sk Zeeshan Ali. "Phenomenological description of scaling laws of sediment transport." E3S Web of Conferences 40 (2018): 04001. http://dx.doi.org/10.1051/e3sconf/20184004001.
Full textOBERLACK, MARTIN. "Similarity in non-rotating and rotating turbulent pipe flows." Journal of Fluid Mechanics 379 (January 25, 1999): 1–22. http://dx.doi.org/10.1017/s0022112098001542.
Full textLayek, G. C., and Sunita. "Multitude scaling laws in axisymmetric turbulent wake." Physics of Fluids 30, no. 3 (2018): 035101. http://dx.doi.org/10.1063/1.5012841.
Full textWang, Xiaohua, and Siva Thangam. "Development and Application of an Anisotropic Two-Equation Model for Flows With Swirl and Curvature." Journal of Applied Mechanics 73, no. 3 (2005): 397–404. http://dx.doi.org/10.1115/1.2151209.
Full textChamecki, Marcelo, Nelson L. Dias, Scott T. Salesky, and Ying Pan. "Scaling Laws for the Longitudinal Structure Function in the Atmospheric Surface Layer." Journal of the Atmospheric Sciences 74, no. 4 (2017): 1127–47. http://dx.doi.org/10.1175/jas-d-16-0228.1.
Full textBallesteros-Paredes, Javier. "Gravity, turbulence and the scaling “laws” in molecular clouds." Proceedings of the International Astronomical Union 11, A29B (2015): 716. http://dx.doi.org/10.1017/s1743921316006499.
Full textBachman, Scott D., and John R. Taylor. "Numerical Simulations of the Equilibrium between Eddy-Induced Restratification and Vertical Mixing." Journal of Physical Oceanography 46, no. 3 (2016): 919–35. http://dx.doi.org/10.1175/jpo-d-15-0110.1.
Full textBarenblatt, G. I., A. J. Chorin, and V. M. Prostokishin. "Scaling Laws for Fully Developed Turbulent Flow in Pipes." Applied Mechanics Reviews 50, no. 7 (1997): 413–29. http://dx.doi.org/10.1115/1.3101726.
Full textShe, Zhen‐Su. "On the scaling laws of thermal turbulent convection." Physics of Fluids A: Fluid Dynamics 1, no. 6 (1989): 911–13. http://dx.doi.org/10.1063/1.857401.
Full textFlandoli, F., M. Gubinelli, M. Hairer, and M. Romito. "Rigorous Remarks about Scaling Laws in Turbulent Fluids." Communications in Mathematical Physics 278, no. 1 (2007): 1–29. http://dx.doi.org/10.1007/s00220-007-0398-9.
Full textWu, Zhao, Tamer A. Zaki, and Charles Meneveau. "High-Reynolds-number fractal signature of nascent turbulence during transition." Proceedings of the National Academy of Sciences 117, no. 7 (2020): 3461–68. http://dx.doi.org/10.1073/pnas.1916636117.
Full textSadeghi, H., M. Oberlack, and M. Gauding. "On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation." Journal of Fluid Mechanics 854 (September 6, 2018): 233–60. http://dx.doi.org/10.1017/jfm.2018.625.
Full textPanton, Ronald L. "Scaling Turbulent Wall Layers." Journal of Fluids Engineering 112, no. 4 (1990): 425–32. http://dx.doi.org/10.1115/1.2909420.
Full textGiacomin, M., and P. Ricci. "Turbulent transport regimes in the tokamak boundary and operational limits." Physics of Plasmas 29, no. 6 (2022): 062303. http://dx.doi.org/10.1063/5.0090541.
Full textKeith, W. L., D. A. Hurdis, and B. M. Abraham. "A Comparison of Turbulent Boundary Layer Wall-Pressure Spectra." Journal of Fluids Engineering 114, no. 3 (1992): 338–47. http://dx.doi.org/10.1115/1.2910035.
Full textGordienko, S. N., and S. S. Moiseev. "Turbulence: mechanics and structure of anomalous scaling." Nonlinear Processes in Geophysics 8, no. 4/5 (2001): 197–200. http://dx.doi.org/10.5194/npg-8-197-2001.
Full textFerraro, Domenico, Sergio Servidio, Vincenzo Carbone, Subhasish Dey, and Roberto Gaudio. "Turbulence laws in natural bed flows." Journal of Fluid Mechanics 798 (June 6, 2016): 540–71. http://dx.doi.org/10.1017/jfm.2016.334.
Full textDai, Y., J. J. Xiang, and M. D. Ding. "Generalized Coronal Loop Scaling Laws and Their Implication for Turbulence in Solar Active Region Loops." Astrophysical Journal 965, no. 1 (2024): 2. http://dx.doi.org/10.3847/1538-4357/ad3031.
Full textOttaviani, M., and G. Manfredi. "Numerical assessment of ion turbulent thermal transport scaling laws." Nuclear Fusion 41, no. 5 (2001): 637–43. http://dx.doi.org/10.1088/0029-5515/41/5/318.
Full textChakraborty, Sagar. "On scaling laws in turbulent magnetohydrodynamic Rayleigh–Benard convection." Physica D: Nonlinear Phenomena 237, no. 24 (2008): 3233–36. http://dx.doi.org/10.1016/j.physd.2008.08.001.
Full textOberlack, Martin, and Silke Guenther. "Shear-free turbulent diffusion—classical and new scaling laws." Fluid Dynamics Research 33, no. 5-6 (2003): 453–76. http://dx.doi.org/10.1016/j.fluiddyn.2003.08.004.
Full textCARAZZO, G., E. KAMINSKI, and S. TAIT. "The rise and fall of turbulent fountains: a new model for improved quantitative predictions." Journal of Fluid Mechanics 657 (June 10, 2010): 265–84. http://dx.doi.org/10.1017/s002211201000145x.
Full textPikeroen, Quentin, Amaury Barral, Guillaume Costa, and Bérengère Dubrulle. "Log-Lattices for Atmospheric Flows." Atmosphere 14, no. 11 (2023): 1690. http://dx.doi.org/10.3390/atmos14111690.
Full textLepot, Simon, Sébastien Aumaître, and Basile Gallet. "Radiative heating achieves the ultimate regime of thermal convection." Proceedings of the National Academy of Sciences 115, no. 36 (2018): 8937–41. http://dx.doi.org/10.1073/pnas.1806823115.
Full textMoarref, Rashad, Ati S. Sharma, Joel A. Tropp, and Beverley J. McKeon. "Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels." Journal of Fluid Mechanics 734 (October 9, 2013): 275–316. http://dx.doi.org/10.1017/jfm.2013.457.
Full textParadisi, P., R. Cesari, A. Donateo, D. Contini, and P. Allegrini. "Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence." Nonlinear Processes in Geophysics 19, no. 1 (2012): 113–26. http://dx.doi.org/10.5194/npg-19-113-2012.
Full textMartinez-Sanchis, Daniel, Andrej Sternin, Sagnik Banik, Oskar Haidn, and Martin Tajmar. "Subgrid Turbulent Flux Models for Large Eddy Simulations of Diffusion Flames in Space Propulsion." Fluids 9, no. 6 (2024): 124. http://dx.doi.org/10.3390/fluids9060124.
Full textWunsch, Scott. "Scaling laws for layer formation in stably-stratified turbulent flows." Physics of Fluids 12, no. 3 (2000): 672–75. http://dx.doi.org/10.1063/1.870272.
Full textLayek, G. C., and Sunita. "Non-Kolmogorov scaling and dissipation laws in planar turbulent plume." Physics of Fluids 30, no. 11 (2018): 115105. http://dx.doi.org/10.1063/1.5048237.
Full textSong, Hao, and Penger Tong. "Scaling laws in turbulent Rayleigh-Bénard convection under different geometry." EPL (Europhysics Letters) 90, no. 4 (2010): 44001. http://dx.doi.org/10.1209/0295-5075/90/44001.
Full textAvsarkisov, V., M. Oberlack, and S. Hoyas. "New scaling laws for turbulent Poiseuille flow with wall transpiration." Journal of Fluid Mechanics 746 (March 28, 2014): 99–122. http://dx.doi.org/10.1017/jfm.2014.98.
Full textBakunin, O. G., and T. J. Schep. "Multi-scale percolation and scaling laws for anisotropic turbulent diffusion." Physics Letters A 322, no. 1-2 (2004): 105–10. http://dx.doi.org/10.1016/j.physleta.2003.10.082.
Full textPlouseau-Guédé, Xavier, Alain Berry, Laurent Maxit, and Valentin Meyer. "Similitude laws for the vibroacoustic response of fluid-loaded plates under a turbulent boundary layer excitation." Journal of the Acoustical Society of America 157, no. 1 (2025): 595–605. https://doi.org/10.1121/10.0034868.
Full textCastro, Ian P. "Dissipative distinctions." Journal of Fluid Mechanics 788 (December 22, 2015): 1–4. http://dx.doi.org/10.1017/jfm.2015.630.
Full textKeitzl, T., J. P. Mellado, and D. Notz. "Impact of Thermally Driven Turbulence on the Bottom Melting of Ice." Journal of Physical Oceanography 46, no. 4 (2016): 1171–87. http://dx.doi.org/10.1175/jpo-d-15-0126.1.
Full textRincon, François. "Theories of convection and the spectrum of turbulence in the solar photosphere." Proceedings of the International Astronomical Union 2, S239 (2006): 58–63. http://dx.doi.org/10.1017/s1743921307000117.
Full textKuhl, Allen, David Grote, and John Bell. "Scaling Turbulent Combustion Fields in Explosions." Applied Sciences 10, no. 23 (2020): 8577. http://dx.doi.org/10.3390/app10238577.
Full text