Academic literature on the topic 'Turbulentné modely'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbulentné modely.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turbulentné modely"
Souza, José Francisco Almeida de, José Luiz Lima de Azevedo, Leopoldo Rota de Oliveira, Ivan Dias Soares, and Maurício Magalhães Mata. "TURBULENCE MODELING IN GEOPHYSICAL FLOWS – PART I – FIRST-ORDER TURBULENT CLOSURE MODELING." Revista Brasileira de Geofísica 32, no. 1 (March 1, 2014): 31. http://dx.doi.org/10.22564/rbgf.v32i1.395.
Full textRincón-Díaz, Carlos A., and José Albors-Garrigós. "Sustaining strategies in RTOs. A contingent model for understanding RTOs’ perfomance." Dirección y Organización, no. 50 (July 1, 2013): 74–84. http://dx.doi.org/10.37610/dyo.v0i50.433.
Full textAntunes do Carmo, José S., A. Temperville, and Fernando J. Seabra-Santos. "Fricción y tensión tangencial por fondo con ola y corriente." Ingeniería del agua 10, no. 2 (June 1, 2003): 177. http://dx.doi.org/10.4995/ia.2003.2583.
Full textNavas-Montilla, A., J. Murillo, and P. García-Navarro. "Modelos de simulación de alto orden para la resolución de fenómenos de propagación de ondas en flujos de lámina libre con turbulencia." Ingeniería del agua 23, no. 4 (October 31, 2019): 275. http://dx.doi.org/10.4995/ia.2019.12169.
Full textMasamoto, Kai, Masayuki Takahashi, and Shinnosuke Obi. "MoP-12 Experimental Study on the Turbulent Flow in a Simplified HDD Model." Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _MoP—12–1_—_MoP—12–3_. http://dx.doi.org/10.1299/jsmemipe.2015._mop-12-1_.
Full textSengupta, Samiran, P. K. Vijayan, K. Sasidharan, and V. K. Raina. "ICONE19-43613 TURBULENT MIXING INSIDE THE CHIMNEY MODEL OF A POOL TYPE RESEARCH REACTOR." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_248.
Full textSventitskiy, Alexander E., and Vladlen A. Zazimko. "THE NUMERICAL MODEL OF MULTIPLE SUPERSONIC TURBULENT JETS OF DIFFERENT GAS COMPOSITION(Multiple Jet)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 273–78. http://dx.doi.org/10.1299/jsmeicjwsf.2005.273.
Full textMueller, Michael E., and Venkat Raman. "Model form uncertainty quantification in turbulent combustion simulations: Peer models." Combustion and Flame 187 (January 2018): 137–46. http://dx.doi.org/10.1016/j.combustflame.2017.09.011.
Full textFischer Filho, João Alberto, Yane De Freitas Da Silva, Alexandre Barcellos Dalri, Luiz Fabiano Palaretti, José Renato Zanini, and Anderson Prates Coelho. "CARACTERIZAÇÃO HIDRÁULICA DE GOTEJADORES DE FLUXO TURBULENTO." IRRIGA 23, no. 2 (October 9, 2018): 380–89. http://dx.doi.org/10.15809/irriga.2018v23n2p380-389.
Full textTamaru, Akihiro, and Shinnosuke Obi. "MoP-11 Large Eddy Simulation for Turbulent Flow in a simplified HDD Model using OpenFOAM." Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2015 (2015): _MoP—11–1_—_MoP—11–3_. http://dx.doi.org/10.1299/jsmemipe.2015._mop-11-1_.
Full textDissertations / Theses on the topic "Turbulentné modely"
Páleš, Patrik. "Rotace kola ve výpočtech externí aerodynamiky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231736.
Full textBrol, Keila Belquiz. "Modelagem e análise de selos de fluxo aplicados a máquinas rotativas." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263055.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-17T18:45:51Z (GMT). No. of bitstreams: 1 Brol_KeilaBelquiz_M.pdf: 7087689 bytes, checksum: b81e96d33b1146da143fae0859da2363 (MD5) Previous issue date: 2011
Resumo: O desenvolvimento de modelos matemáticos que visam simular as características operacionais das máquinas rotativas é importante para representar uma variedade de fenômenos expressivos que se manifestam durante a operação, para tanto é necessário a modelagem dos componentes que caracterizam o comportamento dinâmico do sistema. Este trabalho tem por objetivo determinar os parâmetros físicos que integram os selos de fluxo de folga fixa e angular ao modelo global de sistemas rotativos. As rigidezes e os amortecimentos são obtidos através da solução de equações governantes para líquidos escoando em selos anulares pelo método clássico das perturbações de ordem máxima um e a solução da ordem zero permite demonstrar a variação da pressão e velocidade para as equações de ordem zero. Os resultados obtidos foram validados com os valores apresentados pela literatura. O resultado deste trabalho poderá ser aplicado na modelagem global de uma máquina rotativa, de modo a tornar a análise mais completa do conjunto girante
Abstract: The development of mathematical models designed to simulate operational characteristics is important to represent a wide variety of expressive phenomena that manifest during the operation, and therefore it is necessary the components modeling that characterize the system dynamic behavior. This study aims to determine the physical parameters that influence the flow seals to fixed angles and variables in the global rotating systems model. The stiffness and damping are obtained by solving the governing equations for fluid flowing in the annular seals using the classic perturbation method of maximal order one. The zero-order solution allows to demonstrate the pressure and speed variation to zero order. The results were validated with the similar tests reported in the literature. This work results are eligible to be applied to model a global rotating machine in order to make a more complete rotor analysis
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Souza, Karine Cristiane de Oliveira. "Avaliação de soluções analíticas para escoamentos turbulentos." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-12082016-162604/.
Full textFrom the analytical solution of turbulent field generated by two oscillating grids in fluid in rest, complex turbulent flows have been studied considering the cases of constant and variable viscosities. Promising solutions as well as some turbulence generalization possibilities were obtained considering SCHULZ\'s (2003) non-published proposal of linear governing equations. The solutions are based on the κ-ε model. The Mathematica program was used as a tool in the study of the theoretical solutions. Although this tool simplifies the work derived from the search for viable solutions, it is important to remember that the construction of the problem depends on the researcher\'s skills. The aims of reproducing and extending SCHULZ\'s (2001) model for oscillating grids have been achieved. Additionally, the linear governing equations have shown to have compatible solutions with the observation.
Neto, Severino Cirino de Lima. "Análise híbrida do escoamento turbulento em canais via modelos de turbulência de uma equação de transporte." Universidade Federal da Paraíba, 2006. http://tede.biblioteca.ufpb.br:8080/handle/tede/5408.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The present work consists of a hybrid numerical-analytical simulation of the developing and fully developed turbulent flows inside a parallel-plates channel. The Reynolds equations for the mean flow are solved through the Generalized Integral Transform Technique (GITT) in the boundary layer and streamfunction-only formulations. For turbulence closure, the respectively one-equation turbulence models, and some of their variations, developed by Secundov (1972), Baldwin e Barth (1990), Spalart e Allmaras (1992, 1994) and Menter (1997) were employed. Despite of based on the eddy viscosity concept, as the well-known one-equation k-L turbulence model previously adopted in works that made use of the present hybrid solution methodology, such models do not need any explicit length scale, and therefore are more generals, but only one transport equation for the turbulent viscosity or for a variable directly related to the eddy viscosity. In this sense, some simulations for different Reynolds numbers and different turbulent inlet conditions were developed in order to, in function of the obtained results and the convergence studies of the main potentials involved in the simulations, develop a critically and detailed discussion of the main shortcomings and capability predictions of each turbulence model adopted, such as the non-asymptotic development of the longitudinal velocity component and the friction factor fields. As a consequence of the analysis type performed over each turbulence model investigated and, in addition, due to the excellent numerical quality of the obtained results, the present work extends and consolidates the very important role that the integral transform technique may play in the computational fluid dynamics field meanwhile hybrid methodology.
O presente trabalho consiste na simulação numérico-analítica do escoamento turbulento isotérmico, em desenvolvimento e completamente desenvolvido, no interior de um canal de placas planas e paralelas, através da Técnica da Transformada Integral Generalizada (GITT). As equações médias de Reynolds, escritas segundo as hipótese de camada limite são empregadas na formulação de função corrente. Para o fechamento das equações médias da turbulência foram empregados os modelos de turbulência de uma equação de transporte (e algumas de suas variações) desenvolvidos pelos seguintes autores: Secundov (1972), Baldwin e Barth (1990), Spalart e Allmaras (1992, 1994) e Menter (1997). Apesar de baseados no conceito de viscosidade turbilhonar ( eddy viscosity ), como o tradicional modelo de turbulência de uma equação k-L, anteriormente empregado em trabalhos que fizeram uso da presente metodologia híbrida de solução, tais modelos não necessitam de uma escala explícita de comprimento, e por isso são ditos mais gerais, mas sim, de apenas uma equação de transporte para a própria viscosidade turbulenta (ou uma variável diretamente relacionada à própria viscosidade turbulenta). Nesse sentido, foram simuladas algumas situações de escoamentos (diferentes números de Reynolds e diferentes condições de entrada turbulenta) e buscou-se, em função dos resultados obtidos e de estudos de convergência dos principais potenciais envolvidos nas simulações, uma criteriosa e detalhada discussão das capacidades de previsão de certas características inerentes ao escoamento (o pico da componente longitudinal da velocidade no centro do canal e a depressão do fator de atrito, durante o desenvolvimento do escoamento, ou seja, o comportamento não assintótico dessas variáveis no escoamento) por todos os modelos de turbulência empregados. Em função do tipo de análise oferecida sobre cada modelo de turbulência utilizado, e, em adição, da excelente qualidade dos resultados obtidos com o uso da GITT, o presente trabalho extende e consolida o importante papel que a técnica da transformada integral pode desempenhar no campo da simulação computacional, enquanto metodologia híbrida.
Šilhánková, Lenka. "Numerické modelování přepadu vody přes přeliv." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-409722.
Full textKacálková, Eva. "Numerické modelování hydraulických ztrát v potrubí ve 3D." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240044.
Full textNguyen, Dinh Duong. "Some results on turbulent models." Thesis, Rennes 1, 2020. https://ged.univ-rennes1.fr/nuxeo/site/esupversions/c3bf8d92-25f2-4242-af95-a9625f7ab4a0.
Full textThe aim of the dissertation is twofold: On one hand the thesis provides new turbulent models and their analysis as well. More precisely, based on basic turbulence modeling new forms of Boussinesq assumption --which take into account of back-scatter of energy-- are obtained. Then functional analysis tools are applied to prove the existence and uniqueness of weak solutions to the proposed models. On the other hand the manuscript gives the rate of convergence of $\alpha$-regularization models to the Navier-Stokes equations. More exactly, the modeling error is investigated in the case of two-dimensional space-periodic setting
Nathani, Arun. "A turbulent combustion noise model." Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/43102.
Full textMaster of Science
Silva, Arianne Alves da. "Simulação numérica da estabilidade de escoamentos de um fluido Giesekus." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23102018-160615/.
Full textSeveral industrial applications use viscoelastic fluid flows, and it is necessary to know if the flows propagate in the laminar or turbulent state. Although the hydrodynamics of viscoelastic fluids is strongly affected by the balance between inertial and elastic forces in the flow, the effect of elasticity on the stability of inertial flows has not been completely established. In this work we study what happens during the laminar-turbulent transition, investigating the convection of Tollmien-Schlichting waves for the incompressible flow, for a viscoelastic fluid, between parallel plates, using the constitutive equation Giesekus. For this, the direct numerical simulation was used to verify the stability of the flows to the non-stationary perturbations of this fluid. Computational experiments to verify the code were performed. With the numerical results obtained, it was possible to verify and analyze the stability of flows modelled by Giesekus non-newtonian model.
Maluš, Miroslav. "Komplexní model turbulence pro různé velikosti cel." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442416.
Full textBooks on the topic "Turbulentné modely"
López, Simón Domingo. Numerische Modellierung turbulenter Umströmungen von Gebäuden =: Numerical modelling of turbulent flow around buildings. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 2002.
Find full textPiquet, Jean. Turbulent Flows: Models and Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Find full textComin, Diego. Turbulent firms, turbulent wages? Cambridge, Mass: National Bureau of Economic Research, 2006.
Find full textSpeziale, Charles G. Second-order closure models for rotating turbulent flows. Hampton, Va: ICASE, 1985.
Find full textRodean, Howard C. Stochastic Lagrangian models of turbulent diffusion. Boston, Mass: American Meteorological Society, 1996.
Find full textThomson, David John. Random walk models of turbulent dispersion. Uxbridge: Brunel University, 1988.
Find full textRodean, Howard C. Stochastic Lagrangian Models of Turbulent Diffusion. Boston, MA: American Meteorological Society, 1996. http://dx.doi.org/10.1007/978-1-935704-11-9.
Full textYork, B. Calculation of a class of two-dimensional turbulent boundary layer flows using the Baldwin-Lomax model. New York: American Institute of Aeronautics and Astronautics, 1985.
Find full textBook chapters on the topic "Turbulentné modely"
Ehrich, Sebastian. "Turbulent Inflow Models." In Handbook of Wind Energy Aerodynamics, 1–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-05455-7_42-1.
Full textMenon, Suresh, and Alan R. Kerstein. "The Linear-Eddy Model." In Turbulent Combustion Modeling, 221–47. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_10.
Full textEchekki, Tarek, Alan R. Kerstein, and James C. Sutherland. "The One-Dimensional-Turbulence Model." In Turbulent Combustion Modeling, 249–76. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_11.
Full textKronenburg, A., and E. Mastorakos. "The Conditional Moment Closure Model." In Turbulent Combustion Modeling, 91–117. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_5.
Full textGoussis, Dimitris A., and Ulrich Maas. "Model Reduction for Combustion Chemistry." In Turbulent Combustion Modeling, 193–220. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_9.
Full textBurnat, M. "On Some Models of Turbulent Flow." In Laminar-Turbulent Transition, 729–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82462-3_91.
Full textNehring, U. "Model Equations Simulating Unsteady Viscous Flows." In Laminar-Turbulent Transition, 711–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82462-3_88.
Full textRoos Launchbury, David. "Subgrid Models." In Unsteady Turbulent Flow Modelling and Applications, 7–14. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-11912-6_3.
Full textBorghi, R., and E. Pourbaix. "Lagrangian Models for Turbulent Combustion." In Turbulent Shear Flows 4, 369–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_30.
Full textCuenot, Bénédicte. "The Flamelet Model for Non-Premixed Combustion." In Turbulent Combustion Modeling, 43–61. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_3.
Full textConference papers on the topic "Turbulentné modely"
Garbet, X., and Sadruddin Benkadda. "Turbulence scaling laws and transport models." In TURBULENT TRANSPORT IN FUSION PLASMAS: First ITER International Summer School. AIP, 2008. http://dx.doi.org/10.1063/1.2939038.
Full textDorland, W., G. w. Hammett, T. S. Hahm, and M. A. Beer. "Nonlinear gyrofluid model of ITG turbulence." In U.S.-Japan workshop on ion temperature gradient-driven turbulent transport. AIP, 1994. http://dx.doi.org/10.1063/1.44513.
Full textNordman, H., and J. Weiland. "Reactive drift wave model for tokamak transport." In U.S.-Japan workshop on ion temperature gradient-driven turbulent transport. AIP, 1994. http://dx.doi.org/10.1063/1.44511.
Full textSugama, H., M. Okamoto, and M. Wakatani. "Transport analysis based on K-ɛ anomalous transport model." In U.S.-Japan workshop on ion temperature gradient-driven turbulent transport. AIP, 1994. http://dx.doi.org/10.1063/1.44521.
Full textZimmerman, Daniel S. "Characterization of the magnetorotational instability from a turbulent background state." In MHD COUETTE FLOWS: Experiments and Models. AIP, 2004. http://dx.doi.org/10.1063/1.1832133.
Full textWaltz, R. E., and G. D. Kerbel. "Toroidal turbulence simulations with gyro-Landau fluid models in a nonlinear ballooning mode representation." In U.S.-Japan workshop on ion temperature gradient-driven turbulent transport. AIP, 1994. http://dx.doi.org/10.1063/1.44512.
Full textShirai, H., T. Hirayama, Y. Koide, and M. Azumi. "Ion temperature profile simulation of JT-60 plasmas with ion temperature gradient mode transport models." In U.S.-Japan workshop on ion temperature gradient-driven turbulent transport. AIP, 1994. http://dx.doi.org/10.1063/1.44529.
Full textOlsen, Michael E., and Randolph P. Lillard. "Turbulent Axial Odometer Model." In AIAA Aviation 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2963.
Full textWang, Fang, Yong Huang, and Tian Deng. "Simulation of Turbulent Combustion Using Various Turbulent Combustion Models." In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918759.
Full textGAWȨDZKI, KRZYSZTOF. "Simple models of turbulent transport." In XIVth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704016_0005.
Full textReports on the topic "Turbulentné modely"
Cranfill, C. W. A new multifluid turbulent-mix model. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/465874.
Full textDechant, Lawrence. Approximate Model for Turbulent Stagnation Point Flow. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1235211.
Full textDechant, Lawrence J. Turbulent Spot Pressure Fluctuation Wave Packet Model. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1367453.
Full textKosaly, George, and J. J. Riley. Evaluation of Closure Models of Turbulent Diffusion Flames. Fort Belvoir, VA: Defense Technical Information Center, February 2000. http://dx.doi.org/10.21236/ada378388.
Full textBraun, Noah, and Robert Gore. A Turbulent Mix-Model for Re-stabilized Flows. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1784661.
Full textOzgokmen, Tamay M. A Non-Fickian Mixing Model for Stratified Turbulent Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542575.
Full textOzgokmen, Tamay M. A Non-Fickian Mixing Model for Stratified Turbulent Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada601520.
Full textOzgokmen, Tamay M. A Non-Fickian Mixing Model for Stratified Turbulent Flows. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada590696.
Full textMichalski, A,, D. Andersson, R. Rossi, and C. Soriano. D7.1 DELIVERY OF GEOMETRY AND COMPUTATIONAL MODEL. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.020.
Full textMukerji, S., J. M. McDonough, M. P. Menguec, S. Manickavasagam, and S. Chung. Chaotic map models of soot fluctuations in turbulent diffusion flames. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/676978.
Full text