Academic literature on the topic 'Turing instability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turing instability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turing instability"
Anma, Atsushi, Kunimochi Sakamoto, and Tohru Yoneda. "Unstable subsystems cause Turing instability." Kodai Mathematical Journal 35, no. 2 (June 2012): 215–47. http://dx.doi.org/10.2996/kmj/1341401049.
Full textGuiu-Souto, Jacobo, Lisa Michaels, Alexandra von Kameke, Jorge Carballido-Landeira, and Alberto P. Muñuzuri. "Turing instability under centrifugal forces." Soft Matter 9, no. 17 (2013): 4509. http://dx.doi.org/10.1039/c3sm27624d.
Full textChen, Mengxin, Ranchao Wu, and Liping Chen. "Pattern Dynamics in a Diffusive Gierer–Meinhardt Model." International Journal of Bifurcation and Chaos 30, no. 12 (September 30, 2020): 2030035. http://dx.doi.org/10.1142/s0218127420300359.
Full textXU, L., L. J. ZHAO, Z. X. CHANG, J. T. FENG, and G. ZHANG. "TURING INSTABILITY AND PATTERN FORMATION IN A SEMI-DISCRETE BRUSSELATOR MODEL." Modern Physics Letters B 27, no. 01 (November 26, 2012): 1350006. http://dx.doi.org/10.1142/s0217984913500061.
Full textCai, Yongli, Shuling Yan, Hailing Wang, Xinze Lian, and Weiming Wang. "Spatiotemporal Dynamics in a Reaction–Diffusion Epidemic Model with a Time-Delay in Transmission." International Journal of Bifurcation and Chaos 25, no. 08 (July 2015): 1550099. http://dx.doi.org/10.1142/s0218127415500996.
Full textSzili, L., and J. Tóth. "Necessary condition of the Turing instability." Physical Review E 48, no. 1 (July 1, 1993): 183–86. http://dx.doi.org/10.1103/physreve.48.183.
Full textGuo, Yan, and Hyung Ju Hwang. "Pattern formation (II): The Turing Instability." Proceedings of the American Mathematical Society 135, no. 09 (May 14, 2007): 2855–67. http://dx.doi.org/10.1090/s0002-9939-07-08850-8.
Full textHoang, Tung, and Hyung Ju Hwang. "Turing instability in a general system." Nonlinear Analysis: Theory, Methods & Applications 91 (November 2013): 93–113. http://dx.doi.org/10.1016/j.na.2013.06.010.
Full textMeng, Lili, Yutao Han, Zhiyi Lu, and Guang Zhang. "Bifurcation, Chaos, and Pattern Formation for the Discrete Predator-Prey Reaction-Diffusion Model." Discrete Dynamics in Nature and Society 2019 (April 1, 2019): 1–9. http://dx.doi.org/10.1155/2019/9592878.
Full textLI, AN-WEI, ZHEN JIN, LI LI, and JIAN-ZHONG WANG. "EMERGENCE OF OSCILLATORY TURING PATTERNS INDUCED BY CROSS DIFFUSION IN A PREDATOR–PREY SYSTEM." International Journal of Modern Physics B 26, no. 31 (December 4, 2012): 1250193. http://dx.doi.org/10.1142/s0217979212501937.
Full textDissertations / Theses on the topic "Turing instability"
Soresina, C. "PREDATOR-PREY MODELS: BIFURCATIONS, CROSS-DIFFUSION AND TURING INSTABILITY." Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/489546.
Full textPredator-prey models, homogeneous in space or with spatial diffusion, play a central role in this thesis. Indeed, from a mathematical view point, we investigate stability in systems of ordinary differential equations and of partial differential equations of parabolic type. First, we deal with a predator-prey model, described by a system of two ODEs, in which a strong Allee effect on the prey growth and a predator-dependent trophic function are taken into account. The main strength of this part is that these functions are not specified by analytical expressions, but only characterized by some biologically meaningful properties determining their shapes. On the basis of these properties we are able to perform the stability analysis of the system, using the predation efficiency and a measure of the predator interference as bifurcation parameters. The system admits codimension-two bifurcations points, such as a Bogdanov-Takens and a cusp point; it is worthwhile to notice that they are independent of the particular expression of the model functions. The numerical investigation is further carried on choosing for the model equations some analytical expressions well known in literature, which satisfied the assumed properties, and using Matcont, a continuation Matlab toolbox. This investigation, in addition, has shown the presence of global bifurcations that determine the disappearance of limit cycles through the formation of homoclinic and heteroclinic orbits involving some equilibrium points. Moreover, we have detected a further codimension-two bifurcation point, a Generalized-Hopf. Together with the cusp and the Bogdanov-Takens bifurcation points, these three types of codimension-two bifurcations are the only admissible by a planar system of ordinary differential equations. The second part of this thesis focuses on the study of two predator-prey models with diffusion that justify, in a suitable limit, two classical types of functional responses in the reaction part and present a cross-diffusion term. In detail, two trophic levels are considered, preys and predators which are further divided into searching predators and handling predators. The former are predators active in the predation process, the latter are resting individuals. Then, we start from a system of three partial differential equations, with a standard linear diffusion in terms of Laplacian, and with a Lotka-Volterra reaction term. Through a quasi steady-state approximation we end up with a system of two PDEs with prey and total predator densities as unknowns, in which an Holling-type II functional response appears together with a cross-diffusion term in the predator equation. It is proved that this class of predator-prey models can not give rise to Turing instability. Then we modify the starting model inserting a competition among predators. With this change we end up after a quasi steady-state approximation with a system of two PDEs for prey and total predator densities, characterized by a Beddington-DeAngelis-type functional response and a cross-diffusion term in the predator equation. We look for conditions on the parameters values which lead to Turing instability and we compare these Turing instability regions with the ones obtained when the cross-diffusion term is substituted by a linear diffusion.
LUPO, Salvatore. "FORMAZIONE DI PATTERN PER IL PROCESSO DELL'ELETTRODEPOSIZIONE IN MODELLI DI TIPO REAZIONE-DIFFUSIONE." Doctoral thesis, Università degli Studi di Palermo, 2014. http://hdl.handle.net/10447/90863.
Full textGiunta, Valeria. "Aggregation, Spatio-Temporal Structures and Well-Posedness in Chemotaxis Models of Inflammatory Diseases." Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4102.
Full textAli, Naamat. "Dynamique spatio-temporelle et identification des diffusions non linéaires." Phd thesis, Université de La Rochelle, 2013. http://tel.archives-ouvertes.fr/tel-01066085.
Full textINFERRERA, Guglielmo. "From classical to operatorial models." Doctoral thesis, Università degli Studi di Palermo, 2023. https://hdl.handle.net/10447/580046.
Full textZaker, Nazanin. "Population Dynamics In Patchy Landscapes: Steady States and Pattern Formation." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42279.
Full textGuttal, Vishwesha. "Applications of nonequilibrium statistical physics to ecological systems." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1209696541.
Full textGadeborg, Josefine. "Politisk Instabilitet och Turism : Vad händer när kontrollen försvinner?" Thesis, Umeå universitet, Institutionen för geografi och ekonomisk historia, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-73115.
Full textBennett, James Edward Matthew. "Pattern formation in neural circuits by the interaction of travelling waves with spike-timing dependent plasticity." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:29387080-4213-4179-98b6-bf3d4c49dd00.
Full textWang, Jian. "From local to global: Complex behavior of spatiotemporal systems with fluctuating delay times." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-133734.
Full textZiel der vorliegenden Arbeit ist die Untersuchung der Einflüsse der zeitlich fluktuierenden Verzögerungen in räumlich ausgedehnten diffusiven Systemen. Durch den Vergleich von Systemen mit konstanter Verzögerung bzw. Systemen ohne räumliche Kopplung erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise der Dynamik des räumlich ausgedehnten diffusiven Systems mit fluktuierenden Verzögerungen. Im ersten Teil werden diskrete Systeme in Form von diffusiven Coupled Map Lattices untersucht. Als die lokale iterierte Abbildung des betrachteten Systems wird die logistische Abbildung mit Verzögerung gewählt. In diesem Teil liegt der Fokus auf Musterbildung, Existenz von Multiattraktoren und laufenden Wellen sowie der Möglichkeit der vollen Synchronisation. Masterstabilitätsfunktion, Lyapunov Exponent und Spektrumsanalyse werden benutzt, um das dynamische Verhalten zu verstehen. Im zweiten Teil betrachten wir kontinuierliche Systeme. Hier wird die Fisher-KPP Gleichung mit Verzögerungen im Reaktionsteil untersucht. In diesem Teil liegt der Fokus auf der Existenz der Turing Instabilität. Mit Hilfe von analytischen und numerischen Berechnungen wird gezeigt, dass bei fluktuierenden Verzögerungen eine Turing Instabilität auch in 1-Komponenten-Reaktions-Diffusionsgleichungen gefunden werden kann
Books on the topic "Turing instability"
National Aeronautics and Space Administration (NASA) Staff. Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors. Independently Published, 2019.
Find full textEyre, Lorna, and Simon Whiteley. In-hospital transfer of the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0004.
Full textWatson-Gegeo, Karen Ann, David W. Gegeo, and Billy Fito'o. Critical Community Language Policies in Education. Edited by James W. Tollefson and Miguel Pérez-Milans. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190458898.013.20.
Full textZeitlin, Vladimir. Rotating Shallow-Water model with Horizontal Density and/or Temperature Gradients. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0014.
Full textImage, Isabella. Constraint (2): Thoughts and Passions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198806646.003.0007.
Full textCelestini, Federico. Gustav Mahler and the Aesthetics of De-Identification. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199316090.003.0013.
Full textMenz, Georg. The Political Economy of Debt. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199579983.003.0006.
Full textTapsell, Grant. Religion and the Government of the Later Stuarts. Edited by Andrew Hiscock and Helen Wilcox. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199672806.013.8.
Full textKeymer, Thomas. The Subjective Turn. Edited by David Duff. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199660896.013.20.
Full textBenjamin L, Berger. Part V Rights and Freedoms, B Rights and Freedoms under the Charter, Ch.36 Freedom of Religion. Oxford University Press, 2017. http://dx.doi.org/10.1093/law/9780190664817.003.0036.
Full textBook chapters on the topic "Turing instability"
Perthame, Benoît. "Linear Instability, Turing Instability and Pattern Formation." In Lecture Notes on Mathematical Modelling in the Life Sciences, 117–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19500-1_7.
Full textWalgraef, Daniel. "The Turing Instability and Associated Spatial Structures." In Partially Ordered Systems, 87–106. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1850-0_6.
Full textRodrigues, Daiana, Luis Paulo Barra, Marcelo Lobosco, and Flávia Bastos. "Analysis of Turing Instability for Biological Models." In Computational Science and Its Applications – ICCSA 2014, 576–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09153-2_43.
Full textEgaña Fernández, Giani, J. Sarría González, and Mariano Rodríguez Ricard. "“Strong” Turing-Hopf Instability for Reaction-Diffusion Systems." In Springer Proceedings in Mathematics & Statistics, 137–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05657-5_9.
Full textKe, Yuanyuan, Jing Li, and Yifu Wang. "Density-Suppressed Motility System." In Financial Mathematics and Fintech, 275–339. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3763-7_5.
Full textSingh, Teekam, Shivam, Mukesh Kumar, and Vrince Vimal. "Pattern Dynamics of Prey–Predator Model with Swarm Behavior via Turing Instability and Amplitude Equation." In Advances in Intelligent Systems and Computing, 275–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9953-8_24.
Full textSchneider, Guido, and Dominik Zimmermann. "The Turing Instability in Case of an Additional Conservation Law—Dynamics Near the Eckhaus Boundary and Open Questions." In Patterns of Dynamics, 28–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64173-7_3.
Full textCortadi, Alberto Jimenez, Fernando Boto, Itziar Irigoien, Basilio Sierra, and Alfredo Suarez. "Instability Detection on a Radial Turning Process for Superalloys." In International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding, 247–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67180-2_24.
Full textBindseil, Ulrich, and Alessio Fotia. "Financial Instability." In Introduction to Central Banking, 67–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70884-9_5.
Full textFiedler, Bernold. "Romeo und Julia, spontane Musterbildung und Turings Instabilität." In Alles Mathematik, 77–95. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-91598-6_6.
Full textConference papers on the topic "Turing instability"
Huang, J. G., J. M. Christian, G. S. McDonald, P. Chamorro-Posada, and J. Jahanpanah. "From Turing Instability to Fractals." In Nonlinear Photonics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/np.2007.ntha7.
Full textGENTILE, M., and A. TATARANNI. "TURING INSTABILITY FOR THE SCHNACKENBERG SYSTEM." In Proceedings of the 14th Conference on WASCOM 2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812772350_0043.
Full textTemmyo, Jiro, and Toshiaki Tamamura. "Semiconductor Nanostructures Self-Organized by the Turing Instability." In 1997 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1997. http://dx.doi.org/10.7567/ssdm.1997.b-10-2.
Full textHori, Yutaka, and Hiroki Miyazako. "Semidefinite programming for Turing instability analysis in molecular communication networks." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029976.
Full textXu, Li, and Xiang-Mei Zhang. "Turing instability for a discrete single species Lotka-Volterra system." In 2012 International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA). IEEE, 2012. http://dx.doi.org/10.1109/msna.2012.6324626.
Full textBostock, C., J. M. Christian, G. S. McDonald, A. S. Heyes, and J. G. Huang. "Multi-Turing Instability and Spontaneous Spatial Fractals in Simple Optical Systems." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nth2a.3.
Full textZhang, Mingyue, Min Xiao, Rong Qian, Rong Fang, and Jian Li. "Stability Analysis and Turing Instability of A SIR Model with Reaction - Diffusion." In 2021 33rd Chinese Control and Decision Conference (CCDC). IEEE, 2021. http://dx.doi.org/10.1109/ccdc52312.2021.9601459.
Full textMeng, Yan, Guangwu Wen, and Lequan Min. "Hopf bifurcation and Turing instability in a modified Leslie-Gower prey-predator model." In 2013 7th International Conference on Systems Biology (ISB). IEEE, 2013. http://dx.doi.org/10.1109/isb.2013.6623798.
Full textBozzini, Benedetto, Deborah Lacitignola, Ivonne Sgura, Theodore E. Simos, and George Maroulis. "Turing Instability in an Electrodeposition Morphogenesis Model: An Analytical, Numerical and Experimental Study." In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Theory and Computation: Old Problems and New Challenges. Lectures Presented at the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007): VOLUME 1. AIP, 2007. http://dx.doi.org/10.1063/1.2836113.
Full textChen, Shi, Min Xiao, Yunxiang Lu, Shuai Zhou, and Gong Chen. "Turing Instability of Malware Spreading Model with Reaction-diffusion in Cyber-physical System." In 2021 33rd Chinese Control and Decision Conference (CCDC). IEEE, 2021. http://dx.doi.org/10.1109/ccdc52312.2021.9602316.
Full textReports on the topic "Turing instability"
Theofilis, Vassilios, Nadir Abdessemed, and Spencer J. Sherwin. Global Instability and Control of Low-Pressure Turbine Flows. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada450947.
Full textJames L Crisp. Tevatron stripline turn by turn data and the head-tail instability. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/805561.
Full textSharp, Nathan, Rebecca Cutting, and Drew Sommer. Thermal Instability in the Manufacturing of Wind Turbine Blade Spar Caps. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1633432.
Full textHuang, Cheng, Rohan Gejji, William E. Anderson, and Venkateswaran Sankaran. Effects of Fuel Spray Modeling on Combustion Instability Predictions in a Single-Element Lean Direct Injection (LDI) Gas Turbine Combustor. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada623017.
Full textTOTROVA, Z. H. THE TOPIC OF OBJECTIVITY OF KNOWLEDGE AS A SOCIOCULTURAL PROBLEM. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/2077-1770-2021-14-1-3-14-21.
Full textCook, Joshua, Laura Ray, and James Lever. Dynamics modeling and robotic-assist, leader-follower control of tractor convoys. Engineer Research and Development Center (U.S.), February 2022. http://dx.doi.org/10.21079/11681/43202.
Full textRESEARCH ON DYNAMIC LOAD CARRYING CAPACITY OF ASSEMBLED INTERNAL STIFFENING WIND TURBINE TOWER BASED ON MULTI-SCALE MODELING. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.513.
Full textRESEARCH ON DYNAMIC LOAD CARRYING CAPACITY OF ASSEMBLED INTERNAL STIFFENING WIND TURBINE TOWER BASED ON MULTI-SCALE MODELING. The Hong Kong Institute of Steel Construction, March 2023. http://dx.doi.org/10.18057/ijasc.2023.19.1.11.
Full textBUCKLING BEHAVIOUR OF THE STEEL PLATE IN STEEL – CONCRETE – STEEL SANDWICH COMPOSITE TOWER FOR WIND TURBINE. The Hong Kong Institute of Steel Construction, September 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.7.
Full text