Academic literature on the topic 'TurtleBot'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TurtleBot.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "TurtleBot"
Hou, Yew Cheong, Khairul Salleh Mohamed Sahari, Leong Yeng Weng, et al. "Development of collision avoidance system for multiple autonomous mobile robots." International Journal of Advanced Robotic Systems 17, no. 4 (2020): 172988142092396. http://dx.doi.org/10.1177/1729881420923967.
Full textButt, Rizwan Aslam, and Syed M. Usman Ali. "Semantic Mapping and Motion Planning with Turtlebot Roomba." IOP Conference Series: Materials Science and Engineering 51 (December 16, 2013): 012024. http://dx.doi.org/10.1088/1757-899x/51/1/012024.
Full textPramod Thale, Sumegh, Mihir Mangesh Prabhu, Pranjali Vinod Thakur, and Pratik Kadam. "ROS based SLAM implementation for Autonomous navigation using Turtlebot." ITM Web of Conferences 32 (2020): 01011. http://dx.doi.org/10.1051/itmconf/20203201011.
Full textPhalak, Yogesh, Gaurav Charpe, and Kartik Paigwar. "Omnidirectional Visual Navigation System for TurtleBot Using Paraboloid Catadioptric Cameras." Procedia Computer Science 133 (2018): 190–96. http://dx.doi.org/10.1016/j.procs.2018.07.023.
Full textB., Cristian F. Penagos, Luis A. Pacheco R., and Fredy H. Martínez S. "ARMOS TurtleBot 1 Robotic Platform: Description, Kinematics and Odometric Navigation." International Journal of Engineering and Technology 10, no. 5 (2018): 1402–9. http://dx.doi.org/10.21817/ijet/2018/v10i5/181005043.
Full text黎, 凯龙. "Experimental Design of Autonomous Navigation and Obstacle Avoidance for Turtlebot Robot." Artificial Intelligence and Robotics Research 10, no. 03 (2021): 257–67. http://dx.doi.org/10.12677/airr.2021.103026.
Full textQuan, Hao, Yansheng Li, and Yi Zhang. "A novel mobile robot navigation method based on deep reinforcement learning." International Journal of Advanced Robotic Systems 17, no. 3 (2020): 172988142092167. http://dx.doi.org/10.1177/1729881420921672.
Full textKumar, Neerendra, and Zoltán Vámossy. "Obstacle recognition and avoidance during robot navigation in unknown environment." International Journal of Engineering & Technology 7, no. 3 (2018): 1400. http://dx.doi.org/10.14419/ijet.v7i3.13926.
Full textBENSACI, Chaima, Youcef ZENNIR, and Denis POMORSKI. "Control Of Mobile Robot Navigation Under The Virtual World Matlab-Gazebo." Algerian Journal of Signals and Systems 2, no. 4 (2017): 207–17. http://dx.doi.org/10.51485/ajss.v2i4.46.
Full textTai, Lei, Shaohua Li, and Ming Liu. "Autonomous exploration of mobile robots through deep neural networks." International Journal of Advanced Robotic Systems 14, no. 4 (2017): 172988141770357. http://dx.doi.org/10.1177/1729881417703571.
Full textDissertations / Theses on the topic "TurtleBot"
Qiu, Yinan, and Jianyuan Ma. "Tracking of more than one person in a smart environment using fixed sensors and a mobile robot." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-28147.
Full textNordlund, Fredrik Hans. "Enabling Network-Aware Cloud Networked Robots with Robot Operating System : A machine learning-based approach." Thesis, KTH, Radio Systems Laboratory (RS Lab), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160877.
Full textUnder de senaste åren har ett nytt forskningsområde kallat Cloud Networked Robotics (CNR) växt fram inom den konventionella robottekniken, tack vare den ökade tillgången på billiga robotsystem och stadiga framsteg inom området cloud computing. Molnrobotar syftar på robotar med förmågan att flytta resurstunga moduler till ett moln för att ta del av lagringskapaciteten, den skalbara processorkraften och andra tjänster som ett moln kan tillhandahålla, t.ex. en kunskapsdatabas för robotar över hela världen. Det finns dock ett problem med dessa sorters robotar gällande nåbarhet och QoS för kritiska moduler placerade på ett moln, när dessa robotar verkar i instabila nätverksmiljöer. I ett sådant scenario kan robotarna när som helst förlora anslutningen till molnet, vilket i värsta fall lämnar robotarna hjärndöda. Den här rapporten föreslår en maskininlärningsbaserad nätverksmedveten ramverkslösning för en molnrobot, som kan välja de mest effektiva modulplaceringarna baserat på robotens position, den givna uppgiften och de rådande nätverksförhållanderna. Ramverkslösningen implementerades på en molnrobotsprototyp, baserad på ett robot development kit kallat TurtleBot 2, som använder sig av ett middleware som heter Robot Operating System (ROS). Ett fortskridande experiment utfördes där molnroboten fick i uppgift att utföra ett enkelt uppdrag i laboratoriets korridor, under varierande nätverksförhållanden. Ramverkslösningen utvärderades genom att jämföra resultaten från det fortskridrande experimentet med mätningar som gjordes med samma robot som utförde samma uppgift, fast med alla moduler placerade lokalt på roboten. Resultaten visar att den föreslagna ramverkslösningen kan potentiellt minska batterikonsumptionen med 10%, samtidigt som tiden för att utföra en uppgift kan minskas med 2.4 sekunder (2.8%). Däremot uppstår en flaskhals i framtagna lösningen där varje ny robot kräver 2 månader för att samla ihop nog med data för att maskinilärningsalgoritmen ska visa bra prestanda. Den förlsagna lösningen kan dock vara fördelaktig för CNR om man integrerar den med en kunskapsdatabas för robotar, som kan möjliggöra för varje ny robot att kringå den 2 månader långa träningsperioden, genom att ladda ner existerande kunskap från molnet.
Biro, Alexander. "Combining adjustable autonomy and shared control as a new platform for controlling robotic systems with ROS on TurtleBot." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-64637.
Full textHjelmare, Fredrik, and Jonas Rangsjö. "Simultaneous Localization And Mapping Using a Kinect in a Sparse Feature Indoor Environment." Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81140.
Full textRobotka, Vojtěch. "Interaktivní rozhraní pro vzdáleného robota pro Android." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-235451.
Full textŠťastný, Martin. "Modelování a simulace robotických aplikací." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232094.
Full textRoccatello, Andrea. "Planning mobile robot tasks for autonomous UVC-based COVID-19 sanification of public environments with guaranteed minimum energy distribution." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Carrera, Tânia Ferreira. "Movimentos reativos no robô turtlebot utilizando o kinect." Master's thesis, 2013. http://hdl.handle.net/10198/11982.
Full textWith the arrival of computer vision, researchers have been doing research in methods to capture 3D images of objects, in order to use the information collected in different areas such as medicine, architecture, engineering, education, and among others. The launch of the Microsoft Kinect sensor for Xbox, designed as an accessory to detect the movement of the players came calling the attention of researchers, not only by your affordable price but also for getting available information unencrypted, allowing it to be used for other purposes than videogames. In this work, have been explored the ability to get information about the distances in depth, of this sensor, and apply it to the movements made by the TurtleBot robot, thus enabling the interaction with the environment and make their movement autonomously. The algorithm used in C language + +, on software structure of ROS (Robot Operating System ), is a summary of the method of changing direction based on the centroid from detected points on objects, which will allow the change of direction of the robot when it finds an obstacle, and a method, with clustering of PCL (Point Cloud Library), which will allow the recognition of humans.
Books on the topic "TurtleBot"
Turtleboy and Jet the Wonderpup: A therapeutic comic for ritual abuse survivors. H.P.L. Pub, 1989.
Book chapters on the topic "TurtleBot"
Amsters, Robin, and Peter Slaets. "Turtlebot 3 as a Robotics Education Platform." In Robotics in Education. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26945-6_16.
Full textde Assis Brasil, Pedro Medeiros, Fabio Ugalde Pereira, Marco Antonio de Souza Leite Cuadros, Anselmo Rafael Cukla, and Daniel Fernando Tello Gamarra. "Dijkstra and A* Algorithms for Global Trajectory Planning in the TurtleBot 3 Mobile Robot." In Advances in Intelligent Systems and Computing. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71187-0_32.
Full textSong, Yoonji, Jaedong Kim, and Hanhyuk Cho. "TurtleGO: Application with Cubes for Children’s Spatial Ability Based on AR Technology." In Virtual, Augmented and Mixed Reality. Applications and Case Studies. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21565-1_25.
Full textConference papers on the topic "TurtleBot"
Aagela, Hamza, Maha Al-Nesf, and Violeta Holmes. "An Asus_xtion_probased indoor MAPPING using a Raspberry Pi with Turtlebot robot Turtlebot robot." In 2017 23rd International Conference on Automation and Computing (ICAC). IEEE, 2017. http://dx.doi.org/10.23919/iconac.2017.8082023.
Full textSingh, Diksha, Esha Trivedi, Yukti Sharma, and Vandana Niranjan. "TurtleBot: Design and Hardware Component Selection." In 2018 International Conference on Computing, Power and Communication Technologies (GUCON). IEEE, 2018. http://dx.doi.org/10.1109/gucon.2018.8675050.
Full textBaltovski, Ilia. "Turtlebot Euclid - A better intro to ROS." In ROSCon2017. Open Robotics, 2017. http://dx.doi.org/10.36288/roscon2017-900247.
Full textBaltovski, Ilia. "Turtlebot Euclid - A better intro to ROS." In ROSCon2017. Open Robotics, 2017. http://dx.doi.org/10.36288/roscon2017-900791.
Full textLee, Jihoon. "Turtlebot 2 – the new standard hardware reference platform." In ROSCon2013. Open Robotics, 2013. http://dx.doi.org/10.36288/roscon2013-899053.
Full textLee, Jihoon. "Turtlebot 2 – the new standard hardware reference platform." In ROSCon2013. Open Robotics, 2013. http://dx.doi.org/10.36288/roscon2013-900141.
Full textLee, Jihoon. "Turtlebot 2 – the new standard hardware reference platform." In ROSCon2013. Open Robotics, 2013. http://dx.doi.org/10.36288/roscon2013-900685.
Full textXiong, Chuantang, and Xu Zhang. "An exclusive human-robot interaction method on the TurtleBot platform." In 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2013. http://dx.doi.org/10.1109/robio.2013.6739662.
Full textShahbaz, Syed Ali, and Abhijith Anil Anjana. "Autonomous Navigation Using Partial Artificial Potential Fields On Differential Drive Turtlebot." In 2018 International Conference on Intelligent Autonomous Systems (ICoIAS). IEEE, 2018. http://dx.doi.org/10.1109/icoias.2018.8494152.
Full textHorton, Michael, Lei Chen, and Biswanath Samanta. "Enhancing the security of IoT enabled robotics: Protecting TurtleBot file system and communication." In 2017 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2017. http://dx.doi.org/10.1109/iccnc.2017.7876208.
Full text