Academic literature on the topic 'Twitter sentiment polarity classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Twitter sentiment polarity classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Twitter sentiment polarity classification"
Risnantoyo, Ricky, Arifin Nugroho, and Kresna Mandara. "Sentiment Analysis on Corona Virus Pandemic Using Machine Learning Algorithm." JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 4, no. 1 (July 20, 2020): 86–96. http://dx.doi.org/10.31289/jite.v4i1.3798.
Full textAbu Bakar, Normi Sham Awang, Ros Aziehan Rahmat, and Umar Faruq Othman. "Polarity Classification Tool for Sentiment Analysis in Malay Language." IAES International Journal of Artificial Intelligence (IJ-AI) 8, no. 3 (December 1, 2019): 259. http://dx.doi.org/10.11591/ijai.v8.i3.pp259-263.
Full textAl-Kabi, Mohammed N., Heider A. Wahsheh, and Izzat M. Alsmadi. "Polarity Classification of Arabic Sentiments." International Journal of Information Technology and Web Engineering 11, no. 3 (July 2016): 32–49. http://dx.doi.org/10.4018/ijitwe.2016070103.
Full textMontejo-Ráez, Arturo, Eugenio Martínez-Cámara, M. Teresa Martín-Valdivia, and L. Alfonso Ureña-López. "Ranked WordNet graph for Sentiment Polarity Classification in Twitter." Computer Speech & Language 28, no. 1 (January 2014): 93–107. http://dx.doi.org/10.1016/j.csl.2013.04.001.
Full textMahajan, Prerna, and Anamika Rana. "Sentiment Classification-How to Quantify Public Emotions Using Twitter." International Journal of Sociotechnology and Knowledge Development 10, no. 1 (January 2018): 57–71. http://dx.doi.org/10.4018/ijskd.2018010104.
Full textLohar, Pintu, Haithem Afli, and Andy Way. "Maintaining Sentiment Polarity in Translation of User-Generated Content." Prague Bulletin of Mathematical Linguistics 108, no. 1 (June 1, 2017): 73–84. http://dx.doi.org/10.1515/pralin-2017-0010.
Full textHiriyannaiah, Srinidhi, G. M. Siddesh, and K. G. Srinivasa. "Real-Time Streaming Data Analysis Using a Three-Way Classification Method for Sentimental Analysis." International Journal of Information Technology and Web Engineering 13, no. 3 (July 2018): 99–111. http://dx.doi.org/10.4018/ijitwe.2018070107.
Full textWagh, Bhagyashri, J. V. Shinde, and P. A. Kale. "A Twitter Sentiment Analysis Using NLTK and Machine Learning Techniques." International Journal of Emerging Research in Management and Technology 6, no. 12 (June 11, 2018): 37. http://dx.doi.org/10.23956/ijermt.v6i12.32.
Full textShofiya, Carol, and Samina Abidi. "Sentiment Analysis on COVID-19-Related Social Distancing in Canada Using Twitter Data." International Journal of Environmental Research and Public Health 18, no. 11 (June 3, 2021): 5993. http://dx.doi.org/10.3390/ijerph18115993.
Full textXing, Yongping, Chuangbai Xiao, Yifei Wu, and Ziming Ding. "A Convolutional Neural Network for Aspect-Level Sentiment Classification." International Journal of Pattern Recognition and Artificial Intelligence 33, no. 14 (May 15, 2019): 1959046. http://dx.doi.org/10.1142/s0218001419590468.
Full textDissertations / Theses on the topic "Twitter sentiment polarity classification"
Di, Gennaro Pierluigi. "Due approcci alla sentiment polarity classification di tweet per la lingua italiana." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13270/.
Full textDavrieux, Sebastian. "Studio e realizzazione di un sistema per la Sentiment Analysis basato su reti neurali ?deep?" Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textPalm, Niklas. "Sentiment classification of Swedish Twitter data." Thesis, Uppsala universitet, Avdelningen för datalogi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388420.
Full textSelmer, Oyvind, and Mikael Brevik. "Classification and Visualisation of Twitter Sentiment Data." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22967.
Full textGrönlund, Lucas. "Transfer learning in Swedish - Twitter sentiment classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252536.
Full textSpråkmodeller kan appliceras på en mängd olika uppgifter med bra resultat, men att träna en språkmodell kan dessvärre vara kostsamt både tids- och pengamässigt. Genom att överföra information från en domän till en annan behöver denna kostsamma träningsprocess bara genomföras en gång, och ger således lättare tillgång till dessa modeller. Dagens forskning genomförs främst med engelska som språk vilket således begränsar mängden av färdigtränade modeller på andra språk. Denna rapport utforskar hur mängden data tillgänglig för träning av språkmodeller påverkar resultatet i ett problem gällande attitydanalys av tweets, och utfördes med svenska som språk. Svenska Wikipedia användes för att först träna språkmodellerna som sedan överfördes till en domän bestående av tweets på svenska. Ett flertal språkmodeller tränades med olika mängd data från dessa två domäner för att sedan kunna jämföra deras prestanda. Resultaten visar att överföring av kunskap från Wikipedia till tweets knappt gav upphov till någon förbättring, medan oövervakad träning på tweets förbättrade resultaten markant.
Hallsmar, Fredrik, and Jonas Palm. "Multi-class Sentiment Classification on Twitter using an Emoji Training Heuristic." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186369.
Full textSentimentanalys är ett problem av stor vikt på sociala medier. Ett flertal olika maskininlärningstekniker har använts på senare år och att använda en träningsmängd som är automatiskt annoterad med hälp av en heuristik baserad på så kallade emoticons har varit ett populärt angreppssätt. Användningen av så kallade emojis i textbaserad kommunikation har ökat på sistone. I linje med denna utveckling så ämnar studien att undersöka om det är hållbart med användning av en heuristik baserad på emojis för flerklassig sentimentanalys. Detta undersöks med hjälp av en Multinomial Naive Bayes-klassificerare som tränas med mängder av storlek 4000 till 400 000 (stycken tweets) och olika variationer av N-gram. Resultatet visar att en emojibaserad heuristik fungerar bra jämfört med en som är baserad på hashtags eller emoticons. Dock så har val av klasser och emojirepresentationer en stor påverkan på förvirringen hos klassificeraren.
Longton, Adam. "An empirical analysis of lexical polarity and contextual valence shifters for opinion classification." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/4180.
Full textDavid, Jäderberg. "Sentiment and topic classification of messages on Twitter : and using the results to interact with Twitter users." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-294364.
Full textNepal, Srijan. "Linguistic Approach to Information Extraction and Sentiment Analysis on Twitter." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1342544962.
Full textAraujo, Gabriela Denise. "Análise de sentimento de mensagens do Twitter em português brasileiro relacionadas a temas de saúde." Universidade Federal de São Paulo (UNIFESP), 2014. http://repositorio.unifesp.br/handle/11600/41280.
Full textApproved for entry into archive by Diogo Misoguti (diogo.misoguti@gmail.com) on 2017-09-20T14:18:49Z (GMT) No. of bitstreams: 1 DISSERTAÇÃO - GABRIELA DENISE DE ARAUJO.pdf: 1482312 bytes, checksum: 96da3bfe95afe2bd4424ada9c8c7b89a (MD5)
Made available in DSpace on 2017-09-20T14:18:49Z (GMT). No. of bitstreams: 1 DISSERTAÇÃO - GABRIELA DENISE DE ARAUJO.pdf: 1482312 bytes, checksum: 96da3bfe95afe2bd4424ada9c8c7b89a (MD5) Previous issue date: 2014-07-31
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Objetivo: Construir um método de classificação de sentimento, aqui denominado Sentiment Descriptor Indexing (SDI) ou Indexador de Descritores Sentimentais, para ser aplicado em mensagens do Twitter em português brasileiro relacionadas a temas de saúde possibilitando oferecer uma análise de sentimento com caracterização de aspectos da popularidade e repercussão dos temas. Métodos: A primeira etapa considerou a construção do algoritmo SDI que se baseia na coocorrência de termos do Twitter com descritores do vocabulário ANEW-BR. Emoticons e tratamento de negação foram incorporados no SDI. Na segunda etapa foi realizada uma avaliação do desempenho do algoritmo SDI para mensagens sobre o tema “câncer” de um pe-ríodo de três semanas. As mensagens foram classificadas por voluntários como sa-úde ou não saúde, e positiva, negativa ou neutra e em paralelo pelo SDI. As classifi-cações foram pareadas gerando uma avaliação de desempenho. Também foram geradas análise de sentimento e nuvem de termos. Na terceira etapa foi realizado um experimento de análise de sentimento para os temas “câncer” e “diabetes” em um período de seis meses, com análises de repercussão e popularidade. Resulta-dos: As classificações humana e SDI concordaram na classificação majoritária posi-tiva. Os valores de precisão e revocação resultaram 0,68 e 0,67 respectivamente, gerando melhor desempenho com f0,5-measure 0,68. No experimento coletou-se um total de 25.230 mensagens sobre o tema "câncer" com classificação de sentimento positiva (71%). Pela nuvem de palavras foi possível observar que celebridades, insti-tutos, hospitais, campanhas de saúde e tipos de câncer são assuntos populares so-bre o tema. Para o tema "diabetes" 3.328 mensagens foram coletadas com classifi-cação de sentimento positiva (78%). Para este tema as palavras mais frequentes, indicadas na nuvem de palavras, estavam relacionadas a alimentos e doenças como obesidade e hipertensão. Conclusão: Os resultados obtidos na etapa de avaliação do classificador SDI mostrou que o SDI teve um bom desempenho na tarefa de clas-sificar mensagens do Twitter sobre saúde comparada a classificação realizada por humanos. Entretanto, o tema escolhido retornou mensagens difíceis de serem rotu-ladas até mesmo pelos humanos, gerando discordâncias nas classificações. As con-tribuições deste trabalho visam suprir a falta de métodos de análise de sentimentos para a língua portuguesa brasileira bem como incentivar sua aplicação na melhoria de outras atividades em processamento de linguagem natural.
Objective: Build a sentiment classification method, named Sentiment Descriptor In-dexing (SDI), to be applied in Twitter’s messages in brazilian portuguese related to health topics, providing sentiment analysis with characterization of aspects of the popularity and impact of issues. Methods: The first step regarded the SDI algorithm construction that it is based on the cooccurence of Twitter's terms with descriptors of ANEW-BR vocabulary. Emoticons and deny treatment were embedded in the SDI. In the second step, an evaluation was performed in the algorithm SDI for messages related the topic "cancer" collected in a period of three weeks. The messages were classified by volunteers in topic about health or not health, and positive, negative or neutral and in parallel by the SDI. The ratings were paired generating a performance evaluation, sentiment analysis and cloud of terms. In the third step an experiment of sentiment analysis was performed for the topics "cancer" and "diabetes" in a period of six months, with analysis of impact and popularity. Results: The human and SDI classifications agreed in positive majority classification. The values of precision and recall resulted 0.68 and 0.67 respectively, the best performance was in f0,5-measure 0,68. In experiment, it was collected a total of 25,230 messages on "cancer" and the sentiment classification of these messages was positive (71%). Through the cloud of words was possible to observe that celebrities, institutes, hospitals, health campaigns and types of cancers are popular subjects on the topic. For the topic "diabetes", 3,328 messages were collected and the sentimental classification was positive (78%). For this topic the most frequent words, given the cloud of words were related to food and diseases such as obesity and hypertension. Conclusions: The results obtained in the evaluation step showed that the SDI had a good performance in the task of classifying Twitter’s messages about health topics compared the classification performed by humans. However, the topic chosen brought messages difficult to be labeled even by humans, causing disagreements in the classifications among them. The contributions of this work aims to meet the lack of sentiment analysis methods for the brazilian portuguese language and encourage its application in improving oth-er activities in natural language processing.
Book chapters on the topic "Twitter sentiment polarity classification"
Bi, Yaxin. "Evidential Fusion for Sentiment Polarity Classification." In Belief Functions: Theory and Applications, 365–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11191-9_40.
Full textVan Canneyt, Steven, Nathan Claeys, and Bart Dhoedt. "Topic-Dependent Sentiment Classification on Twitter." In Lecture Notes in Computer Science, 441–46. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16354-3_48.
Full textDritsas, Elias, Gerasimos Vonitsanos, Ioannis E. Livieris, Andreas Kanavos, Aristidis Ilias, Christos Makris, and Athanasios Tsakalidis. "Pre-processing Framework for Twitter Sentiment Classification." In IFIP Advances in Information and Communication Technology, 138–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19909-8_12.
Full textSupriya, B. N., Vish Kallimani, S. Prakash, and C. B. Akki. "Twitter Sentiment Analysis Using Binary Classification Technique." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 391–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46909-6_36.
Full textTrindade, Luis, Hui Wang, William Blackburn, and Niall Rooney. "Factored Semantic Sequence Kernel for Sentiment Polarity Classification." In Statistical Language and Speech Processing, 284–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39593-2_25.
Full textTrindade, Luis A., Hui Wang, William Blackburn, and Niall Rooney. "An Enhanced Semantic Tree Kernel for Sentiment Polarity Classification." In Computational Linguistics and Intelligent Text Processing, 50–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37256-8_5.
Full textTan, Luke Kien-Weng, Jin-Cheon Na, Yin-Leng Theng, and Kuiyu Chang. "Sentence-Level Sentiment Polarity Classification Using a Linguistic Approach." In Digital Libraries: For Cultural Heritage, Knowledge Dissemination, and Future Creation, 77–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24826-9_13.
Full textYanagimoto, Hidekazu, Mika Shimada, and Akane Yoshimura. "Word Classification for Sentiment Polarity Estimation Using Neural Network." In Human Interface and the Management of Information. Information and Interaction Design, 669–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39209-2_75.
Full textZhang, Yaowen, Xiaojun Xiang, Cunyan Yin, and Lin Shang. "Parallel Sentiment Polarity Classification Method with Substring Feature Reduction." In Lecture Notes in Computer Science, 121–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40319-4_11.
Full textTsakalidis, Adam, Symeon Papadopoulos, and Ioannis Kompatsiaris. "An Ensemble Model for Cross-Domain Polarity Classification on Twitter." In Web Information Systems Engineering – WISE 2014, 168–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11746-1_12.
Full textConference papers on the topic "Twitter sentiment polarity classification"
Lima, Raul de Araújo, and Paulo T. Guerra. "An Analysis of the Sentiment Classification of Short Messages Using Word2Vec." In XV Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/eniac.2018.4436.
Full textMao, Qianren, Jianxin Li, Senzhang Wang, Yuanning Zhang, Hao Peng, Min He, and Lihong Wang. "Aspect-Based Sentiment Classification with Attentive Neural Turing Machines." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/714.
Full textAi, Xinzhi, Xiaoge Li, Feixiong Hu, Shuting Zhi, and Likun Hu. "Multi-Layer Attention Approach for Aspect based Sentiment Analysis." In 9th International Conference on Natural Language Processing (NLP 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101410.
Full textKaljahi, Rasoul, and Jennifer Foster. "Sentiment Expression Boundaries in Sentiment Polarity Classification." In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/w18-6222.
Full textDinsoreanu, Mihaela, and Andrei Bacu. "Unsupervised Twitter Sentiment Classification." In International Conference on Knowledge Management and Information Sharing. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0005079002200227.
Full textLi, Shoushan, Zhongqing Wang, Sophia Yat Mei Lee, and Chu-Ren Huang. "Sentiment Classification with Polarity Shifting Detection." In 2013 International Conference on Asian Language Processing (IALP). IEEE, 2013. http://dx.doi.org/10.1109/ialp.2013.44.
Full textAnsari, Daniel. "Sentiment Polarity Classification Using Structural Features." In 2015 IEEE International Conference on Data Mining Workshop (ICDMW). IEEE, 2015. http://dx.doi.org/10.1109/icdmw.2015.57.
Full textColhon, Mihaela, Madalina Cerban, Alex Becheru, and Mirela Teodorescu. "Polarity shifting for Romanian sentiment classification." In 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). IEEE, 2016. http://dx.doi.org/10.1109/inista.2016.7571834.
Full textLek, Hsiang Hui, and Danny C. C. Poo. "Aspect-Based Twitter Sentiment Classification." In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2013. http://dx.doi.org/10.1109/ictai.2013.62.
Full textBarnaghi, Peiman, Parsa Ghaffari, and John G. Breslin. "Opinion Mining and Sentiment Polarity on Twitter and Correlation between Events and Sentiment." In 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService). IEEE, 2016. http://dx.doi.org/10.1109/bigdataservice.2016.36.
Full text