Academic literature on the topic 'Two-Dimensional Modeling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Two-Dimensional Modeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Two-Dimensional Modeling"

1

Kostrobij, P., and I. Ryzha. "Modeling of carbon monoxide oxidation process on the two-dimensional catalyst surface." Mathematical Modeling and Computing 3, no. 2 (December 31, 2016): 146–62. http://dx.doi.org/10.23939/mmc2016.02.146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aguiar, P. M. Q., and J. M. F. Moura. "Three-dimensional modeling from two-dimensional video." IEEE Transactions on Image Processing 10, no. 10 (2001): 1541–51. http://dx.doi.org/10.1109/83.951539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kadlec, Jaroslav. "Two‐dimensional process modeling (2DPM)." Business Process Management Journal 18, no. 6 (November 2, 2012): 849–75. http://dx.doi.org/10.1108/14637151211283320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jacobs, Richard A., and Ronald F. Probstein. "Two-dimensional modeling of electroremediation." AIChE Journal 42, no. 6 (June 1996): 1685–96. http://dx.doi.org/10.1002/aic.690420620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, T. T., and T. F. Quatieri. "Two-Dimensional Speech-Signal Modeling." IEEE Transactions on Audio, Speech, and Language Processing 20, no. 6 (August 2012): 1843–56. http://dx.doi.org/10.1109/tasl.2012.2188795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pichler, P., W. Jüngling, S. Selberherr, and H. Pötzl. "Two-dimensional coupled diffusion modeling." Physica B+C 129, no. 1-3 (March 1985): 187–91. http://dx.doi.org/10.1016/0378-4363(85)90566-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Makse, Hernán A., Pierre Cizeau, and H. Eugene Stanley. "Modeling stratification in two-dimensional sandpiles." Physica A: Statistical Mechanics and its Applications 249, no. 1-4 (January 1998): 391–96. http://dx.doi.org/10.1016/s0378-4371(97)00497-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jankowski, R., and H. Walukiewicz. "Modeling of two-dimensional random fields." Probabilistic Engineering Mechanics 12, no. 2 (April 1997): 115–21. http://dx.doi.org/10.1016/s0266-8920(96)00040-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gu, Ruochuan. "Modeling Two-Dimensional Turbulent Offset Jets." Journal of Hydraulic Engineering 122, no. 11 (November 1996): 617–24. http://dx.doi.org/10.1061/(asce)0733-9429(1996)122:11(617).

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

James, Wesley P., Kent Laza, Frank Bell, George Moridis, and Ken Kim. "Two‐Dimensional Groundwater Modeling with Microcomputers." Journal of Water Resources Planning and Management 113, no. 2 (March 1987): 293–307. http://dx.doi.org/10.1061/(asce)0733-9496(1987)113:2(293).

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Two-Dimensional Modeling"

1

Skinner, Gregory H. "Two-dimensional auto-regressive modeling." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pimental-Lopez, Jose. "Modeling two-dimensional infiltration from furrows." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/279977.

Full text
Abstract:
Numerical simulations were performed to study two-dimensional infiltration from furrows. The simulations were carried out using the models SWMS_2D, HYDRUS-2D and HYDRUS-1D. The first model was used to evaluate the individual effect of soil and furrow parameters on cumulative infiltration and deep seepage. Cumulative infiltration was found to be more sensitive to saturated hydraulic conductivity, wetted perimeter and furrow spacing than the other parameters for relatively long times, while cumulative deep seepage was more sensitive to the same parameters except to the furrow spacing. It was verified that two-dimensional cumulative infiltration can be approximated using one-dimensional models, for example HYDRUS-1D, by combining the vertical and horizontal infiltrations. The two-dimensional cumulative infiltration is underpredicted by no more than 35% using this calculation. When steady state is reached the steady infiltration rate may be linearly related to the depth of the furrow. As a result, steady infiltration rate is dependent only on type of soil, water depth in the furrow and furrow width. Broocks-Corey soil hydraulic parameters were matched to the van Genuchten parameters by four different procedures. The method based on matching sorptivities produced the closest results to the van Genuchten solution for one- and two-dimensional cumulative infiltration. However, cumulative deep seepage was not accurately simulated. The SCS infiltration parameters were also matched but using an inverse problem methodology. The parameters obtained described cumulative infiltration reasonably well.
APA, Harvard, Vancouver, ISO, and other styles
3

Gräf, Michael. "Two-Dimensional Analytical Modeling of Tunnel-FETs." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/450516.

Full text
Abstract:
Basat en un mecanisme de transport de corrent de banda a banda, el túnel-FET és capaç de superar la limitació de pendent sub-llindar física del MOSFET de 60 mV /dec. Per tant, s'ha convertit en un dels dispositius més prometedors per ser el successor del MOSFET clàssic en els últims anys. Aquesta tesi descriu tots els passos necessaris per modelar analíticament un Túnel-FET de doble porta. El model inclou una solució electrostàtica de dues dimensions en totes les regions del dispositiu, el que permet fins i tot simulacions hetero-unió del dispositiu. Per a un comportament més realista del dispositiu, cal tenir en compte el rendiment del dispositiu que limita els perfils de dopatge de forma Gaussiana en les unions del canal. Les expressions per a les probabilitats de túnel de banda a banda i les de Trap-Assisted-Tunneling (TAT) són executades per un enfocament WKB quasi bidimensional. El corrent del dispositiu es calcula mitjançant la teoria de transmissió de Landauer. El model és vàlid per a dispositius de canal curt i les estàncies estan ben comparades amb les dades de simulació TCAD Sentaurus i amb les medicions proporcionades. S'introdueix un modelo general per les flactuacions del dopant aleatoria, que prediu les influencies característiques del dispositiu en el corrent de sortida i el voltatge llindar. El model s'aplica al MOSFET, així com a dispositius TFET.
Basado en un mecanismo de transporte de corriente banda a banda, el Tunnel-FET es capaz de superar la limitación de pendiente sub-umbral física del MOSFET de 60 mV/dec. Por lo tanto, esto lo convierte en uno de los dispositivos más prometedores para ser el sucesor del MOSFET clásico en los últimos años. Esta tesis describe todos los pasos necesarios para modelar analíticamente un Tunnel-FET de doble puerta. El modelo incluye una solución electrostática bidimensional en todas las regiones del dispositivo, lo que permite incluso simulaciones de hetero-unión del dispositivo. Para un comportamiento más realista del dispositivo se tiene en cuenta el rendimiento del dispositivo que limita los perfiles de dopaje de forma Gaussiana en las uniones del canal. Las expresiones para las probabilidades de túnel de banda a banda y de Trap-Assisted-Tunneling (TAT) se implementan mediante un enfoque de WKB cuasi bidimensional. La corriente del dispositivo se calcula mediante la teoría de transmisión de Landauer. El modelo es válido para dispositivos de canal corto y las estancias están bien comparadas con los datos de simulación TCAD Sentaurus y con las mediciones proporcionadas. Se introduce un modelo general para las fluctuaciones del dopado aleatorio, que predice las influencias características del dispositivo en la corriente de salida y el voltaje umbral. El modelo se aplica al MOSFET, así como a los dispositivos TFET.
Based on a band-to-band current transport mechanism, the Tunnel-FET is able to overcome the physical subthreshold slope limitation of the MOSFET of 60 mV/dec. Therefore, it has become one of the most promising devices to be the successor of the classical MOSFET in the last few years. This thesis describes all necessary steps to analytically model a double-gate Tunnel-FET. The model includes a two-dimensional electrostatic solution in all device regions, which enables even hetero-junction device simulations. Device performance limiting Gaussian-shaped doping profiles at the channel junctions are taken into account for a realistic device behavior. Expressions for the band-to-band and trap-assisted-tunneling probabilities are implemented by a quasi two-dimensional WKB approach. The device current is calculated based on Landauer's transmission theory. The model is valid for short-channel devices and stays is good agreement with the TCAD Sentaurus simulation data and with the provided measurements. A general model for random-dopant-fluctuations is introduced, which predicts characteristic device influences on the output current and threshold voltage. The model is applied to MOSFET, as well as TFET devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Seto, Haruki. "Two-Dimensional Transport Modeling of Tokamak Plasmas." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gonzalez, Ninel S. "Two-dimensional modeling of the Red River Floodway." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0004/MQ45048.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Esmond, Micah Jeshurun. "Two-dimensional, Hydrodynamic Modeling of Electrothermal Plasma Discharges." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81447.

Full text
Abstract:
A two-dimensional, time-dependent model and code have been developed to model electrothermal (ET) plasma discharges. ET plasma discharges are capillary discharges that draw tens of kA of electric current. The current heats the plasma, and the plasma radiates energy to the capillary walls. The capillary walls ablate by melting and vaporizing and by sublimation. The newly developed model and code is called the Three-fluid, 2D Electrothermal Plasma Flow Simulator (THOR). THOR simulates the electron, ion, and neutral species as separate fluids coupled through interaction terms. The two-dimensional modeling capabilities made available in this new code represent a tool for the exploration and analysis of the physics involved in ET plasma discharges that has never before been available. Previous simulation models of ET plasma discharges have relied primarily on a 1D description of the plasma. These models have often had to include a tunable correction factor to account for the vapor shield layer - a layer of cold ablated vapor separating the plasma core from the ablating surface and limiting the radiation heat flux to the capillary wall. Some studies have incorporated a 2D description of the plasma boundary layer and shown that the effects of a vapor shield layer can be modeled using this 2D description. However, these 2D modeling abilities have not been extended to the simulation of pulsed ET plasma discharges. The development of a fully-2D and time-dependent simulation model of an entire ET plasma source has enabled the investigation of the 2D development of the vapor shield layer and direct comparison with experiments. In addition, this model has provided novel insight into the inherently 2D nature of the internal flow characteristics involved within the plasma channel in an ET plasma discharge. The model is also able to capture the effects of inter-species interactions. This work focuses on the development of the THOR model. The model has been implemented using C++ and takes advantage of modern supercomputing resources. The THOR model couples the 2D hydrodynamics and the interactions of the plasma species through joule heating, ionization, recombination, and elastic collisions. The analysis of simulation results focuses on emergent internal flow characteristics, direct simulation of the vapor shield layer, and the investigation of source geometry effects on simulated plasma parameters. The effect of elastic collisions between electrons and heavy species are shown to affect internal flow characteristics and cause the development of back-flow inside the ET plasma source. The development of the vapor shield layer has been captured using the diffusion approximation for radiation heat transfer within the ET plasma source with simulated results matching experimental measurements. The relationship between source radius and peak current density inside ET plasma discharges has also been explored, and the transition away from the ablation-controlled operation of ET plasma discharges has been observed.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Ng, Karen Pei-Tak. "Two-dimensional hydraulic-habitat modeling of a rehabilitated river." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99003.

Full text
Abstract:
The application of a 2D hydraulic-habitat model, River2D, to simulate flows and fish habitat areas in a reach of the Nicolet River (Quebec, Canada) containing two sets of double-wing rock current deflectors to enhance fish habitat was examined. Depth-averaged velocity in the reach was determined using one or two measurement points in the vertical under the assumption that the profile was logarithmic; however, the presence of boulders and obstructions disturbed the profile, making it difficult to characterize using only two measurement points. The sensitivity of the simulation results to roughness characterization, topographic scale, mesh refinement, and boundary conditions was evaluated. The simulated and observed depths had correlation coefficients of 0.93 to 0.97, while the velocity correlation coefficients were 0.56 to 0.67. Qualitatively, the model accurately predicted the flow patterns, e.g. the recirculation zones downstream of the deflectors. Habitat suitability curves for brown trout, taken from literature, were used in the habitat model. Simulated discharges from 0.74 m3/s to 1.94 m3/s were critical minimum flows for suitable spawning brown trout habitat. The model was adequate for qualitatively simulating flow and habitat in this reach, however, the complex flow conditions may be better represented by a 3D model.
APA, Harvard, Vancouver, ISO, and other styles
8

Killingstad, Marc W. "Two-dimensional numerical modeling of enhanced in situ denitrification." Master's thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-01202010-020321/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Olds, Shana D. "Modeling and LQR Control of a Two-Dimensional Airfoil." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36668.

Full text
Abstract:
In this paper we develop a mathematical model of a two-dimensional aeroelastic airfoil. This model is used to design a flutter suppression controller. Flutter is a vibration in a wing caused by airstream energy being absorbed by the lifting surface. Flutter increases with increasing speed. For simplicity, we consider a flat plate in a two-dimensional flow. The model is developed in the frequency domain and then transformed into the time domain. The uncontrolled model is numerically simulated using MATLAB. Linear Quadratic Regulator (LQR) theory is used to design a state feedback controller. The LQR control scheme consists of using a full state feedback controller of the form u=-Kx, where K is a control gain matrix. The goal is to use LQR theory to supress flutter and to maintain stability of the closed loop system.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
10

Gross, Matthew L. "Two-Dimensional Modeling of AP/HTPB Utilizing a Vorticity Formulation and One-Dimensional Modeling of AP and ADN." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2077.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Two-Dimensional Modeling"

1

Skinner, Gregory H. Two-dimensional auto-regressive modeling. Monterey, Calif: Naval Postgraduate School, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tew, Roy C. Study of two-dimensional compressible non-acoustic modeling of stirling machine type components. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tew, Roy C. Study of two-dimensional compressible non-acoustic modeling of stirling machine type components. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tew, Roy C. Study of two-dimensional compressible non-acoustic modeling of stirling machine type components. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stewart, Gregory. Fish-flow investigation: I. Two-dimensional modeling for predicting fish biomass in western Colorado. [Denver, Colo.?]: Colorado Division of Wildlife, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lefkoff, Lawrence J. AQMAN: Linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling. Menlo Park, Calif: Dept. of the Interior, U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bardina, Jorge E. Turbulence modeling ; Turbulence compressibility corrections ; Three-dimensional Navier-Stokes method with two-equation turbulence models for efficient numerical simulation of hypersonic flows ; Three-dimensional Navier-Stokes simulations with two-equation turbulence models of intersecting shock-waves/turbulent boundary layer at Mach 8.3. San Jose, Calif: MCAT Institute, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

L, Jones Joseph. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling: A pilot study of the Snoqualmie River, Washington. Tacoma, Wash: U.S. Dept. of the Interior, U.S. Geological Survey, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jones, Joseph L. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling: A pilot study of the Snoqualmie River, Washington. Tacoma, Wash: U.S. Dept. of the Interior, U.S. Geological Survey, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

L, Jones Joseph. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling: A pilot study of the Snoqualmie River, Washington. Tacoma, Wash: U.S. Dept. of the Interior, U.S. Geological Survey, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Two-Dimensional Modeling"

1

Alata, Olivier, and Claude Cariou. "2-D Linear Stochastic Modeling." In Two-Dimensional Signal Analysis, 65–114. London, UK: ISTE, 2013. http://dx.doi.org/10.1002/9780470611067.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murthy, D. N., Jaiwook Baik, Richard Wilson, and Michael Bulmer. "Two-Dimensional Failure Modeling." In Springer Handbook of Engineering Statistics, 97–111. London: Springer London, 2006. http://dx.doi.org/10.1007/978-1-84628-288-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chalikov, Dmitry V. "Two-Dimensional Wave Model." In Numerical Modeling of Sea Waves, 7–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32916-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tan, Huibin, Xiang Zhang, Naiyang Guan, Dacheng Tao, Xuhui Huang, and Zhigang Luo. "Two-Dimensional Euler PCA for Face Recognition." In MultiMedia Modeling, 548–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14442-9_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fang, Chengfang, Chunwang Zhang, and Ee-Chien Chang. "An Optimization Model for Aesthetic Two-Dimensional Barcodes." In MultiMedia Modeling, 278–90. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04114-8_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bear, Jacob, and Arnold Verruijt. "Modeling Two-Dimensional Flow in Aquifers." In Modeling Groundwater Flow and Pollution, 85–122. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3379-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Zengtao, and Cliff Butcher. "Two-Dimensional (2D) Damage Percolation Modeling." In Micromechanics Modelling of Ductile Fracture, 133–52. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6098-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Porubov, A. V. "Two-Dimensional Modeling of Diatomic Lattice." In Advanced Structured Materials, 263–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73694-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strobl, R. O., and G. T. Yeh. "Two-Dimensional Modeling of Saltwater Intrusion." In Computational Methods in Water Resources X, 1035–42. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9204-3_125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eldredge, Jeff D. "Examples of Two-Dimensional Flow Modeling." In Mathematical Modeling of Unsteady Inviscid Flows, 341–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18319-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Two-Dimensional Modeling"

1

Brown, Mark, Mel Slater, Mark Brown, and Mel Slater. "Three-dimensional versus two-dimensional displays for air traffic control." In Modeling and Simulation Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wiechel, John F., and Dennis A. Guenther. "Two Dimensional Thoracic Modeling Considerations." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/890605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ko, Yu-Jung, Hang Zhao, Yoonsang Kim, IV Ramakrishnan, Shumin Zhai, and Xiaojun Bi. "Modeling Two Dimensional Touch Pointing." In UIST '20: The 33rd Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3379337.3415871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bleistein, Norman. "Asymptotic two-and-one-half-dimensional modeling from two-dimensional computations." In 1985 SEG Technical Program Expanded Abstracts. SEG, 1985. http://dx.doi.org/10.1190/1.1892585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Díez-Minguito, M. "Driven two-dimensional Lennard-Jones fluid." In MODELING COOPERATIVE BEHAVIOR IN THE SOCIAL SCIENCES. AIP, 2005. http://dx.doi.org/10.1063/1.2008619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pinheiro, Mario J. "Two-Dimensional Modeling of the OAUGDP¿." In IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Subramanian, K. G., M. Geethalakshmi, Atulya K. Nagar, and S. K. Lee. "Two-dimensional Picture Grammar models." In 2008 Second UKSIM European Symposium on Computer Modeling and Simulation (EMS). IEEE, 2008. http://dx.doi.org/10.1109/ems.2008.72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nezlin, M. V., A. Yu Rylov, K. B. Titishov, and G. P. Chernikov. "Milestones in rotating shallow water modeling of Rossby vortices, plasma drift vortices, and spiral structures in galaxies." In The workshop on two-dimensional turbulence in plasmas and fluids. AIP, 1997. http://dx.doi.org/10.1063/1.54442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berginc, Gerard. "Advances in two-dimensional and three-dimensional laser imagery modeling." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6050368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Valenzuela, H. M., and A. D. Salvia. "Modeling of two-dimensional systems using cumulants." In [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1991. http://dx.doi.org/10.1109/icassp.1991.151012.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Two-Dimensional Modeling"

1

Rusu, P. Two-dimensional combat modeling with partial differential equations. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/5803419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kirouac, G. J., T. A. Trabold, P. F. Vassallo, W. E. Moore, and R. Kumar. Instrumentation development for multi-dimensional two-phase flow modeling. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/353194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

V.S. Lukin and S.C. Jardin. Hall MHD Modeling of Two-dimensional Reconnection: Application to MRX Experiment. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/809959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bender, M. D., Ming C. Shiao, G. E. Hauser, and S. R. Butkus. Two-dimensional water quality modeling of Town Creek embayment on Guntersville Reservoir. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6326767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barrows, Richard. Two Dimensional Finite Element Modeling of Swift Delta Soil Nail Wall by "ABAQUS". Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rodgers, A., H. Tkalcic, and D. McCallen. Understanding Ground Motion in Las Vegas: Insights from Data Analysis and Two-Dimensional Modeling. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15013918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, K., N. A. Petersson, and A. Rodgers. Acoustic Wave Propagation Modeling by a Two-dimensional Finite-difference Summation-by-parts Algorithm. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1361603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Winters, W. S., G. H. Evans, and C. D. Moen. CURRENT - A Computer Code for Modeling Two-Dimensional, Chemically Reaccting, Low Mach Number Flows. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/459961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maingi, Rajesh. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/10187893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wellman, G. W., K. V. Diegert, and R. Salzbrenner. Two-dimensional quasistatic modeling of exclusion region barriers in support of design guide development. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10111111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography