To see the other types of publications on this topic, follow the link: Two-state systems.

Journal articles on the topic 'Two-state systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Two-state systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aerts, Diederik, and Marek Czachor. "Two-State Dynamics for Replicating Two-Strand Systems." Open Systems & Information Dynamics 14, no. 04 (2007): 397–410. http://dx.doi.org/10.1007/s11080-007-9064-0.

Full text
Abstract:
We propose a formalism for describing two-strand systems of a DNA type by means of soliton von Neumann equations, and illustrate how it works on a simple example exactly solvably by a Darboux transformation. The main idea behind the construction is the link between solutions of von Neumann equations and entangled states of systems consisting of two subsystems evolving in time in opposite directions. Such a time evolution has analogies in realistic DNA where the polymerazes move on leading and lagging strands in opposite directions.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Hong, and Lu Yu. "Universality of dissipative two-state systems." Physical Review B 45, no. 23 (1992): 13753–56. http://dx.doi.org/10.1103/physrevb.45.13753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Müller, A. "Phase operator for two-state systems." Physical Review A 57, no. 2 (1998): 731–36. http://dx.doi.org/10.1103/physreva.57.731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shakov, Kh Kh, J. H. McGuire, L. Kaplan, D. Uskov, and A. Chalastaras. "Sudden switching in two-state systems." Journal of Physics B: Atomic, Molecular and Optical Physics 39, no. 6 (2006): 1361–78. http://dx.doi.org/10.1088/0953-4075/39/6/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kirillov, A. B., D. C. Radulescu, and D. F. Styer. "Vasserstein distances in two-state systems." Journal of Statistical Physics 56, no. 5-6 (1989): 931–37. http://dx.doi.org/10.1007/bf01016786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

De Zela, F. "Hidden coherences and two-state systems." Optica 5, no. 3 (2018): 243. http://dx.doi.org/10.1364/optica.5.000243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zeilinger, Anton, Herbert J. Bernstein, and M. A. Horne. "Information Transfer with Two-state Two-particle Quantum Systems." Journal of Modern Optics 41, no. 12 (1994): 2375–84. http://dx.doi.org/10.1080/09500349414552211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

GUTMAN, SHAUL. "State-Space Stability of Two-Dimensional Systems." IMA Journal of Mathematical Control and Information 4, no. 1 (1987): 55–63. http://dx.doi.org/10.1093/imamci/4.1.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Afanaseva, Olga S., Galina F. Egorova, and Elena A. Afanaseva. "Forecasting state diagrams two-component salt systems." Vestnik of Samara State Technical University. Technical Sciences Series 32, no. 1 (2024): 6–17. http://dx.doi.org/10.14498/tech.2024.1.1.

Full text
Abstract:
The article proposes a method for forecasting and approximate calculating the two-component systems characteristics state diagrams. The results for 200 salt systems with a common cation and 100 with a common anion systems statistical analysis of fase diagrams are presented. In this paper, the authors propose to consider two signs of the eutectic points presence in binary systems and a method for approximate calculation the eutectic point temperature and concentration values. The first criterion for the presence or absence of eutectic points in the system is determined using specific, isobaric
APA, Harvard, Vancouver, ISO, and other styles
10

Sankaranarayanan, R., Jane H. Sheeba, and M. Lakshmanan. "Dynamical echo in two-state quantum systems." Chaos, Solitons & Fractals 33, no. 5 (2007): 1618–24. http://dx.doi.org/10.1016/j.chaos.2006.03.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Shi, Yunlong, Hong Chen, and Xiang Wu. "Variational study of dissipative two-state systems." Physical Review B 49, no. 4 (1994): 2931–34. http://dx.doi.org/10.1103/physrevb.49.2931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Civalleri, Pier Paolo, Marco Gilli, and Michele Bonnin. "Equivalent circuits for two-state quantum systems." International Journal of Circuit Theory and Applications 35, no. 3 (2007): 265–80. http://dx.doi.org/10.1002/cta.408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Fernando, K., and H. Nicholson. "Stability assessment of two-dimensional state-space systems." IEEE Transactions on Circuits and Systems 32, no. 5 (1985): 484–87. http://dx.doi.org/10.1109/tcs.1985.1085736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rakos, Balázs, Árpád I. Csurgay, and Wolfgang Porod. "Recovering pure states in two-state quantum systems." Superlattices and Microstructures 34, no. 3-6 (2003): 503–7. http://dx.doi.org/10.1016/j.spmi.2004.03.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Grigorescu, M. "Decoherence and dissipation in quantum two-state systems." Physica A: Statistical Mechanics and its Applications 256, no. 1-2 (1998): 149–62. http://dx.doi.org/10.1016/s0378-4371(98)00076-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Friddle, Raymond W., Peter Talkner, and James J. De Yoreo. "Analysis of Reversible Two-State Systems Under Force." Biophysical Journal 98, no. 3 (2010): 617a. http://dx.doi.org/10.1016/j.bpj.2009.12.3370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Benmahammed, K. "Factored state-space realisation of two-dimensional systems." IEE Proceedings D Control Theory and Applications 135, no. 6 (1988): 421. http://dx.doi.org/10.1049/ip-d.1988.0063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Goldberg, Leslie Ann, Mark Jerrum, and Mike Paterson. "The computational complexity of two-state spin systems." Random Structures and Algorithms 23, no. 2 (2003): 133–54. http://dx.doi.org/10.1002/rsa.10090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Camalet, S. "Non-equilibrium entangled steady state of two independent two-level systems." European Physical Journal B 84, no. 3 (2011): 467–74. http://dx.doi.org/10.1140/epjb/e2011-20520-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shore, Bruce W. "Two-state behavior inN-state quantum systems: The Morris–Shore transformation reviewed." Journal of Modern Optics 61, no. 10 (2013): 787–815. http://dx.doi.org/10.1080/09500340.2013.837205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dieball, Cai, Diego Krapf, Matthias Weiss, and Aljaž Godec. "Scattering fingerprints of two-state dynamics." New Journal of Physics 24, no. 2 (2022): 023004. http://dx.doi.org/10.1088/1367-2630/ac48e8.

Full text
Abstract:
Abstract Particle transport in complex environments such as the interior of living cells is often (transiently) non-Fickian or anomalous, that is, it deviates from the laws of Brownian motion. Such anomalies may be the result of small-scale spatio-temporal heterogeneities in, or viscoelastic properties of, the medium, molecular crowding, etc. Often the observed dynamics displays multi-state characteristics, i.e. distinct modes of transport dynamically interconverting between each other in a stochastic manner. Reliably distinguishing between single- and multi-state dynamics is challenging and r
APA, Harvard, Vancouver, ISO, and other styles
22

Califano, C., S. Monaco, and D. Normand-Cyrot. "STATE ESTIMATION FOR TWO OUTPUT SYSTEMS IN DISCRETE TIME." IFAC Proceedings Volumes 40, no. 12 (2007): 444–49. http://dx.doi.org/10.3182/20070822-3-za-2920.00073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yaz, E. "On state-feedback stabilization of two-dimensional digital systems." IEEE Transactions on Circuits and Systems 32, no. 10 (1985): 1069–70. http://dx.doi.org/10.1109/tcs.1985.1085611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lima, G., F. A. Torres-Ruiz, L. Neves, A. Delgado, C. Saavedra, and S. Pádua. "State determination for composite systems of two spatial qubits." Journal of Physics: Conference Series 84 (October 1, 2007): 012012. http://dx.doi.org/10.1088/1742-6596/84/1/012012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Agarwal, G. S. "State reconstruction for a collection of two-level systems." Physical Review A 57, no. 1 (1998): 671–73. http://dx.doi.org/10.1103/physreva.57.671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Viola, Lorenza, and Seth Lloyd. "Dynamical suppression of decoherence in two-state quantum systems." Physical Review A 58, no. 4 (1998): 2733–44. http://dx.doi.org/10.1103/physreva.58.2733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Curnoe, S. H. "Exchange interactions in two-state systems: rare earth pyrochlores." Journal of Physics: Condensed Matter 30, no. 23 (2018): 235803. http://dx.doi.org/10.1088/1361-648x/aac061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Levitin, G. "Reliability of multi-state systems with two failure-modes." IEEE Transactions on Reliability 52, no. 3 (2003): 340–48. http://dx.doi.org/10.1109/tr.2003.818714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhao, Dong, Youqing Wang, and Zhiping Lin. "Integrated state/disturbance observers for two-dimensional linear systems." IET Control Theory & Applications 9, no. 9 (2015): 1373–83. http://dx.doi.org/10.1049/iet-cta.2014.1380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sung, Yoon-Gyung, and William E. Singhose. "Limited-state commands for systems with two flexible modes." Mechatronics 19, no. 5 (2009): 780–87. http://dx.doi.org/10.1016/j.mechatronics.2009.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

WU, JIANSHE, LICHENG JIAO, XIAOHUA WANG, YANGYANG LI, and HONG HAN. "TUNING THE SYNCHRONOUS STATE OF TWO DIFFERENT CHAOTIC SYSTEMS." International Journal of Modern Physics B 25, no. 28 (2011): 3755–64. http://dx.doi.org/10.1142/s0217979211101971.

Full text
Abstract:
Unidirectional coupled synchronization of two identical or different chaotic systems has been carefully studied based on the master–slave synchronization scheme, where the synchronous state is that of the master system and cannot be changed after they realized synchronization. In this paper, a general bidirectional synchronization scheme is presented which made the master–slave scheme a special case. It is straightforward to tune the synchronous state by just changing the value of a parameter. Based on the general bidirectional synchronization scheme, active control method is used to tune the
APA, Harvard, Vancouver, ISO, and other styles
32

Kuchinskii, É. Z., and M. V. Sadovskii. "Models of the pseudogap state of two-dimensional systems." Journal of Experimental and Theoretical Physics 88, no. 5 (1999): 968–79. http://dx.doi.org/10.1134/1.558879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tudor, Tiberiu. "Dynamics of Two-State Systems: Time-Varying Polarization Devices." Journal of the Physical Society of Japan 81, no. 2 (2012): 024006. http://dx.doi.org/10.1143/jpsj.81.024006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Grabert, Hermann. "Dissipative quantum tunneling of two-state systems in metals." Physical Review B 46, no. 19 (1992): 12753–56. http://dx.doi.org/10.1103/physrevb.46.12753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Łuczka, Jerzy. "Quantum open systems in a two-state stochastic reservoir." Czechoslovak Journal of Physics 41, no. 3 (1991): 289–92. http://dx.doi.org/10.1007/bf01598768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Salehkalaibar, Sadaf, Mohammad Hossein Yassaee, Vincent Y. F. Tan, and Mehrasa Ahmadipour. "State Masking Over a Two-State Compound Channel." IEEE Transactions on Information Theory 67, no. 9 (2021): 5651–73. http://dx.doi.org/10.1109/tit.2021.3096646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fisz, J. J. "Polarized fluorescence spectroscopy of two-ground- and two-excited-state systems in solutions." Chemical Physics Letters 262, no. 5 (1996): 495–506. http://dx.doi.org/10.1016/s0009-2614(96)01130-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Marichal, Jean-Luc, Pierre Mathonet, Jorge Navarro, and Christian Paroissin. "Joint signature of two or more systems with applications to multistate systems made up of two-state components." European Journal of Operational Research 263, no. 2 (2017): 559–70. http://dx.doi.org/10.1016/j.ejor.2017.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cui, Peng, Hong Guo Zhao, and Mei Zhang. "Optimal State Fusion of Linear Systems with Two Channel Observations." Key Engineering Materials 467-469 (February 2011): 823–28. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.823.

Full text
Abstract:
State fusion problem of linear systems with two channel observations is discussed. A globally optimal recursive algorithm is proposed based on projection formula and innovation analysis. Different linear weighted fusion, the algorithm presented is globally optimal, which is equivalent to centralized Kalman filtering. Moreover, the algorithm is good for real-time demand for innovations from different channels are orthogonal.
APA, Harvard, Vancouver, ISO, and other styles
40

FESSAS, P. "Stabilizability of two interconnected systems with local state vector feedbacks." International Journal of Control 46, no. 6 (1987): 2075–86. http://dx.doi.org/10.1080/00207178708934036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Berezhkovskii, A. M., M. Coppey, and S. Y. Shvartsman. "Signaling gradients in cascades of two-state reaction-diffusion systems." Proceedings of the National Academy of Sciences 106, no. 4 (2009): 1087–92. http://dx.doi.org/10.1073/pnas.0811807106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Quinn, J. J. "Solid state physics: Magnetic interactions in quasi-two-dimensional systems." Nature 317, no. 6036 (1985): 389–90. http://dx.doi.org/10.1038/317389a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pichl, Lukáš, Hiroki Nakamura, and Jiřı́ Horáček. "Complete reflection in two-state crossing and noncrossing potential systems." Journal of Chemical Physics 113, no. 3 (2000): 906–18. http://dx.doi.org/10.1063/1.481871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gomez-Exposito, Antonio, Catalina Gomez-Quiles, and Izudin Dzafic. "State Estimation in Two Time Scales for Smart Distribution Systems." IEEE Transactions on Smart Grid 6, no. 1 (2015): 421–30. http://dx.doi.org/10.1109/tsg.2014.2335611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cobden, D. H., M. J. Uren, and M. Pepper. "Dissipative tunneling in two-state systems at the Si/SiO2interface." Physical Review Letters 71, no. 25 (1993): 4230–33. http://dx.doi.org/10.1103/physrevlett.71.4230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rhyu, Jinwook, Dongjae Kim, and Jaewook Nam. "Quantitative analysis of dispersion state for nearly two-dimensional systems." Measurement 168 (January 2021): 108420. http://dx.doi.org/10.1016/j.measurement.2020.108420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

de Figueiredo, Djairo G., João Marcos do Ó, and Jianjun Zhang. "Ground state solutions of Hamiltonian elliptic systems in dimension two." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150, no. 4 (2019): 1737–68. http://dx.doi.org/10.1017/prm.2018.78.

Full text
Abstract:
AbstractThe aim of this paper is to study Hamiltonian elliptic system of the form 0.1$$\left\{ {\matrix{ {-\Delta u = g(v)} & {{\rm in}\;\Omega,} \cr {-\Delta v = f(u)} & {{\rm in}\;\Omega,} \cr {u = 0,v = 0} & {{\rm on}\;\partial \Omega,} \cr } } \right.$$ where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane 0.2$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$We assume that the nonli
APA, Harvard, Vancouver, ISO, and other styles
48

Rachid, Mansouri, Bettayeb Maamar, and Djennoune Said. "Comparison between two approximation methods of state space fractional systems." Signal Processing 91, no. 3 (2011): 461–69. http://dx.doi.org/10.1016/j.sigpro.2010.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kawakami, Atsushi. "A State-Space Realization Form of Two-Dimensional Digital Systems." IFAC Proceedings Volumes 30, no. 6 (1997): 325–29. http://dx.doi.org/10.1016/s1474-6670(17)43385-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Englman, R. "Curvature maxima in two-state systems: A semi-classical study." Physics Letters A 367, no. 4-5 (2007): 345–50. http://dx.doi.org/10.1016/j.physleta.2007.03.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!