Academic literature on the topic 'Type-II alignment'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Type-II alignment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Type-II alignment"

1

Bhardwaj, Garima, Sandhya K., Richa Dolia, M. Abu-Samak, Shalendra Kumar, and P. A. Alvi. "A Comparative Study on Optical Characteristics of InGaAsP QW Heterostructures of Type-I and Type-II Band Alignments." Bulletin of Electrical Engineering and Informatics 7, no. 1 (2018): 35–41. http://dx.doi.org/10.11591/eei.v7i1.872.

Full text
Abstract:
In this paper, we have configured InGaAsP QW (quantum well) heterostructures of type-I and type-II band alignments and simulated their optical characteristics by solving 6 x 6 Kohn-Luttinger Hamiltonian Matrix. According to the simulation results, the InGaAsP QW heterostructure of type-I band alignment has been found to show peak optical gain (TE mode) of the order of~3600/cm at the transition wavelength~1.40 µm; while of type-II band alignment has achieved the peak gain (TE mode) of the order of~7800/cm at the wavelength of~1.85 µm (eye safe region). Thus, both of the heterostructures can be utilized in designing of opto-or photonic devices for the emission of radiations in NIR (near infrared region) but form the high gain point of view, the InGaAsP of type-II band alignment can be more preferred.
APA, Harvard, Vancouver, ISO, and other styles
2

Wei, Su-Huai, and Alex Zunger. "InAsSb/InAs: A type-I or a type-II band alignment." Physical Review B 52, no. 16 (1995): 12039–44. http://dx.doi.org/10.1103/physrevb.52.12039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deva, Taru, and S. Krishnaswamy. "Structure-based sequence alignment of type-II restriction endonucleases." Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1544, no. 1-2 (2001): 217–28. http://dx.doi.org/10.1016/s0167-4838(00)00223-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Madhusudan, K., and V. Nagaraja. "Alignment and phylogenetic analysis of type II DNA topoisomerases." Journal of Biosciences 21, no. 5 (1996): 613–29. http://dx.doi.org/10.1007/bf02703140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McGuigan, B. C., A. S. Chang, C. Greenhill, H. T. Johnson, and R. S. Goldman. "Influence of strain and dislocations on GaSb/GaAs quantum dots: From nested to staggered band alignment." Journal of Applied Physics 131, no. 8 (2022): 085703. http://dx.doi.org/10.1063/5.0070657.

Full text
Abstract:
We investigate the influence of strain and dislocations on band alignment in GaSb/GaAs quantum dot systems. Composition profiles from cross-sectional scanning tunneling microscopy images are interpolated onto a finite element mesh in order to calculate the distribution of local elastic strain, which is converted to a spatially varying band alignment using deformation potential theory. Our calculations predict that dislocation-induced strain relaxation and charging lead to significant local variations in band alignment. Furthermore, misfit strain induces a transition from a nested (type I) to a staggered (type II) band alignment. Although dislocation-induced strain relaxation prevents the type I to type II transition, electrostatic charging at dislocations induces the staggered band alignment once again.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Linghai, Xu Zhang, and Gang Lu. "Band Alignment in Two-Dimensional Halide Perovskite Heterostructures: Type I or Type II?" Journal of Physical Chemistry Letters 11, no. 8 (2020): 2910–16. http://dx.doi.org/10.1021/acs.jpclett.0c00376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simma, M., T. Fromherz, G. Bauer, and G. Springholz. "Type I/type II band alignment transition in strained PbSe∕PbEuSeTe multiquantum wells." Applied Physics Letters 95, no. 21 (2009): 212103. http://dx.doi.org/10.1063/1.3263722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiao, Junting, Lei Zhang, Hui Zhou, et al. "Type-II Interface Band Alignment in the vdW PbI2–MoSe2 Heterostructure." ACS Applied Materials & Interfaces 12, no. 28 (2020): 32099–105. http://dx.doi.org/10.1021/acsami.0c04985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Resasco, Joaquin, Hao Zhang, Nikolay Kornienko, et al. "TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment." ACS Central Science 2, no. 2 (2016): 80–88. http://dx.doi.org/10.1021/acscentsci.5b00402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lo, Shun S., Tihana Mirkovic, Chi-Hung Chuang, Clemens Burda, and Gregory D. Scholes. "Emergent Properties Resulting from Type-II Band Alignment in Semiconductor Nanoheterostructures." Advanced Materials 23, no. 2 (2010): 180–97. http://dx.doi.org/10.1002/adma.201002290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Type-II alignment"

1

Teranishi, T. "Photochemical Behavior of Type-II Semiconductor Heterodimers." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35176.

Full text
Abstract:
Type-II semiconductor heterodimers with a staggered alignment of band edges at the heterointerface can promote spatial charge separation of the electron and hole in different parts of the heterodimer for photocatalytic and photovoltaic applications. In this paper, the two kinds of CdS-based type-II semiconductor heterodimers were successfully synthesized. Type-II CdS-CdTe heterodimers without any defects exhibited clear photo-induced electron transfer, whereas CdS-Cu31S16 heterodimers showed dominant consumption of photogenerated carries via vacancy-induced decay processes. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35176
APA, Harvard, Vancouver, ISO, and other styles
2

Reinhart, Christoph F. "Type II band alignment in Sl¦1¦-¦xGe¦x/Sl(001) quantum wells." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq24230.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, Ming-Hui, and 詹明蕙. "Direct evidence of type II band alignment in ZnO nanorods/P3HT heterostructures." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/89410221796248366194.

Full text
Abstract:
碩士<br>國立臺灣大學<br>應用物理所<br>99<br>In this thesis, the emission from ZnO/P3HT heterostructures with type II band alignment has been investigated, analyzed and discussed. The photoluminescence (PL) emission around 950 nm can be found and attributed to the type II transition related to the recombination of electrons in conduction band of ZnO and holes in highest occupied molecular orbital (HOMO of P3HT). Power-dependent PL spectra exhibiting a blue-shift with the increasing excitation power offer one of the evidences on the type II transition. In addition, lifetime of P3HT measured by using time-resolved photoluminescence (TRPL) also strongly supports that the infrared light indeed arises from the type II transition. It is found that the lifetime of P3HT in ZnO/P3HT heterostructrue (396 ps) is much shorter than that of pure P3HT film (613 ps). Therefore, our measurements provide the first direct evidence of the type II band alignment in ZnO/P3HT heterostructure.
APA, Harvard, Vancouver, ISO, and other styles
4

Gélinas, Guillaume. "Comprendre et maîtriser le passage de type I à type II de puits quantiques d'In(x)Ga(1-x)As(y)Sb(1-y) sur substrat de GaSb." Thèse, 2015. http://hdl.handle.net/1866/16034.

Full text
Abstract:
Les antimoniures sont des semi-conducteurs III-V prometteurs pour le développement de dispositifs optoélectroniques puisqu'ils ont une grande mobilité d'électrons, une large gamme spectrale d'émission ou de détection et offrent la possibilité de former des hétérostructures confinées dont la recombinaison est de type I, II ou III. Bien qu'il existe plusieurs publications sur la fabrication de dispositifs utilisant un alliage d'In(x)Ga(1-x)As(y)Sb(1-y) qui émet ou détecte à une certaine longueur d'onde, les détails, à savoir comment sont déterminés les compositions et surtout les alignements de bande, sont rarement explicites. Très peu d'études fondamentales sur l'incorporation d'indium et d'arsenic sous forme de tétramères lors de l'épitaxie par jets moléculaires existent, et les méthodes afin de déterminer l'alignement des bandes des binaires qui composent ces alliages donnent des résultats variables. Un modèle a été construit et a permis de prédire l'alignement des bandes énergétiques des alliages d'In(x)Ga(1-x)As(y)Sb(1-y) avec celles du GaSb pour l'ensemble des compositions possibles. Ce modèle tient compte des effets thermiques, des contraintes élastiques et peut aussi inclure le confinement pour des puits quantiques. De cette manière, il est possible de prédire la transition de type de recombinaison en fonction de la composition. Il est aussi montré que l'indium ségrègue en surface lors de la croissance par épitaxie par jets moléculaires d'In(x)Ga(1-x)Sb sur GaSb, ce qui avait déjà été observé pour ce type de matériau. Il est possible d'éliminer le gradient de composition à cette interface en mouillant la surface d'indium avant la croissance de l'alliage. L'épaisseur d'indium en surface dépend de la température et peut être évaluée par un modèle simple simulant la ségrégation. Dans le cas d'un puits quantique, il y aura une seconde interface GaSb sur In(x)Ga(1-x)Sb où l'indium de surface ira s'incorporer. La croissance de quelques monocouches de GaSb à basse température immédiatement après la croissance de l'alliage permet d'incorporer rapidement ces atomes d'indium et de garder la seconde interface abrupte. Lorsque la composition d'indium ne change plus dans la couche, cette composition correspond au rapport de flux d'atomes d'indium sur celui des éléments III. L'arsenic, dont la source fournit principalement des tétramères, ne s'incorpore pas de la même manière. Les tétramères occupent deux sites en surface et doivent interagir par paire afin de créer des dimères d'arsenic. Ces derniers pourront alors être incorporés dans l'alliage. Un modèle de cinétique de surface a été élaboré afin de rendre compte de la diminution d'incorporation d'arsenic en augmentant le rapport V/III pour une composition nominale d'arsenic fixe dans l'In(x)Ga(1-x)As(y)Sb(1-y). Ce résultat s'explique par le fait que les réactions de deuxième ordre dans la décomposition des tétramères d'arsenic ralentissent considérablement la réaction d'incorporation et permettent à l'antimoine d'occuper majoritairement la surface. Cette observation montre qu'il est préférable d'utiliser une source de dimères d'arsenic, plutôt que de tétramères, afin de mieux contrôler la composition d'arsenic dans la couche. Des puits quantiques d'In(x)Ga(1-x)As(y)Sb(1-y) sur GaSb ont été fabriqués et caractérisés optiquement afin d'observer le passage de recombinaison de type I à type II. Cependant, celui-ci n'a pas pu être observé puisque les spectres étaient dominés par un niveau énergétique dans le GaSb dont la source n'a pu être identifiée. Un problème dans la source de gallium pourrait être à l'origine de ce défaut et la résolution de ce problème est essentielle à la continuité de ces travaux.<br>Antimonide-based semiconductors are promising in the development of optoelectronic devices considering that the high electron mobility, the possibility to emit or absorb light for a large number of wavelengths in the infrared region and the change in recombination type for confined heterostructure make them a prime subject of research. A good number of publications are aimed at developing devices based on In(x)Ga(1-x)As(y)Sb(1-y) alloys to emit or detect a specific wavelength without giving much information about the composition determination or the band alignment. There are only a few fundamental studies about the incorporation of indium and none about the incorporation of arsenic tetramers by molecular beam epitaxy. Also, the values of the band offsets between binary compounds forming the In(x)Ga(1-x)As(y)Sb(1-y) alloys diverge and the methods used to do so are sometimes arbitrary. A model was constructed and predicts the band alignment between In(x)Ga(1-x)As(y)Sb(1-y) alloys and GaSb for any values of x and y. This model considers thermal effects, strain and confinement for quantum wells. Therefore, it is possible to predict the type of recombination for any composition. Indium atoms tend to segregate on the surface while the growth of In(x)Ga(1-x)Sb on GaSb is taking place by molecular beam epitaxy. This behavior has already been seen before and the work presented here corroborates this observation. It is possible to build up a thin layer of indium on the surface prior to the growth of the alloy to avoid a change of composition in the layer. The thickness of this layer is dependent on the temperature of the substrate and can be evaluated with a simple model of segregation. In the case of a quantum well, there will be another interface where the indium floating on the surface will incorporate. To avoid the formation of a long gradient of composition at this interface, it is recommended to grow a few monolayers of GaSb at low temperature without a growth interruption. This way, the indium will incorporate rapidly and leave a sharp interface. The ratio between the indium beam equivalent pressure and the beam equivalent pressure of indium and gallium gives the nominal composition and is the same as the measured composition by XRD in the alloy. The incorporation of arsenic tetramers is not as straightforward in In(x)Ga(1-x)As(y)Sb(1-y) alloys and is shown to decrease when the V/III ratio is increased as measured by XRD. A simple kinetic model explained that this behavior is caused by antimony occupying a large fraction of the surface. The dissociation of tetramers into dimers is a reaction of second order and the tetramers occupy two sites on the surface and makes the incorporation a slower process. Therefore, the use of arsenic tetramers is not the best choice for a good control on the arsenic composition in the layer. In(x)Ga(1-x)As(y)Sb(1-y) quantum wells were grown on GaSb and were optically characterized to observe the transition of type I recombination to type II. This transition could not be corroborated because all the measurements showed an unknown transition related to the GaSb buffer layer. The origin of this optical signature could not be identified, but may be related to a contaminant in the gallium cell. Identifying the source of this problem and solving it will be essential to go further and observe the transition of type I to type II.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Type-II alignment"

1

Kuroda, T., T. Mano, M. Abbarchi, K. Sakoda, Jisoon Ihm, and Hyeonsik Cheong. "GaAs Quantum Dots with Type-II Band Alignment." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jung, Hyuna, Hyun Kum, and Jinyoung Hwang. "Band Alignment Transition from Type I to Type II of InP/ In0.48Ga0.52P quantum Dots." In TENCON 2018 - 2018 IEEE Region 10 Conference. IEEE, 2018. http://dx.doi.org/10.1109/tencon.2018.8650474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mukhin, Mikhail S., Yakov V. Terent'ev, Leonid E. Golub, et al. "Electron Spin Alignment in InSb Type-II Quantum Dots in an InAs Matrix." In 15TH INTERNATIONAL CONFERENCE ON NARROW GAP SYSTEMS (NGS15). AIP, 2011. http://dx.doi.org/10.1063/1.3671691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dai, Meng-Qiao, and Lin-Yue Lanry Yung. "Synthesis of CdTe/CdS Core/Shell Quantum Dots under Ambient Air Atmosphere with Type-I to Type-II Band Alignment Transition." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoffman, Darin, Binh-Minh Nguyen, Edward Kwei-wei Huang, et al. "The importance of band alignment in VLWIR type-II InAs/GaSb heterodiodes containing the M-structure barrier." In SPIE OPTO: Integrated Optoelectronic Devices, edited by Manijeh Razeghi, Rengarajan Sudharsanan, and Gail J. Brown. SPIE, 2009. http://dx.doi.org/10.1117/12.810033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kato, K., H. Matsui, H. Tabata, M. Takenaka, and S. Takagi. "Proposal and demonstration of oxide-semiconductor/(Si, SiGe, Ge) bilayer tunneling field effect transistor with type-II energy band alignment." In 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 2017. http://dx.doi.org/10.1109/iedm.2017.8268398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tomic, Stanko. "Theoretical model of quantum dot array based intermediate band solar cell: Effect of Sb induced type II alignment on dynamical processes." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6745132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Swaminathan, Venkataraman, John W. Little та Richard L. Tober. "Infrared detectors and lasers operating in the 3-12 μm range using band-gap engineered structures with type II band-gap alignment". У Integrated Optoelectronic Devices 2006, редактори Manijeh Razeghi та Gail J. Brown. SPIE, 2006. http://dx.doi.org/10.1117/12.639493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mukai, Yuri, Masao Yoshizawa, Hirotaka Tanaka, Takanori Sasaki, and Masami Ikeda. "A discrimination method for Golgi type II membrane proteins based on the hydropathy alignment and the position-specific score matrix around their transmembrane regions." In Computing (TISC). IEEE, 2010. http://dx.doi.org/10.1109/tisc.2010.5714613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Giunchiglia, Fausto, and Mattia Fumagalli. "Entity Type Recognition – Dealing with the Diversity of Knowledge." In 17th International Conference on Principles of Knowledge Representation and Reasoning {KR-2020}. International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/kr.2020/42.

Full text
Abstract:
Semantic Heterogeneity is the problem that arises when multiple resources present differences in how they represent the same real-world phenomenon. In KR, an early approach was the development of ontologies and, later on, when ontologies showed at the knowledge level the same semantic heterogeneity that they were meant to fix at the data level, to compute mappings among them. In this paper we acknowledge the impossibility of avoiding semantic heterogeneity, this being a consequence of the more general phenomenon of the diversity of the world and of the world descriptions. In this perspective, the heterogeneity of ontologies is a feature (and not a bug to be fixed by aligning them) which gives the possibility to use the most suitable ontology in any given application context. The main contributions of this paper are: (i) a novel articulation of the problem of semantic heterogeneity, as it appears at the knowledge level, as contextuality, (ii) its qualitative and quantitative formalization in terms of a set of diversity and unity metrics and (iii) an Entity Type Recognition algorithm which selects the contextually most appropriate ontology and exploits it to solve the current problem, e.g., the alignment and integration of a set of input schemas. The experimental results show the validity of the approach.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!